通过 R 中行的均等分布合并 2 Data.frame

Merging 2 Data.frame by equal distribution of Rows in R

我有两个数据框 df_1df_2 超过 5000 个观察值(行)。我想基于 DateMcode 两个相似的列合并它们,这样行在两个数据框中均匀分布。详情见下文。

>df_1
 Date      Mcode    TNo. BSize
1  1/8/2014 3R72B7K8ZN 1426576   7.2
2  1/8/2014 3R72B7K8ZN 1426578   7.5
3  1/8/2014 3R72B7K8ZN 1426579   7.5
4  1/8/2014 8R55BNW9H5 1426581   7.2
5  1/8/2014 8R55BNW9H5 1426582   7.5
6  1/8/2014 8R55BNW9H5 1426584   7.5
7  1/8/2014 3R72B7K8ZN 1426606   7.5
8  1/8/2014 3R72B7K8ZN 1426610   7.2
9  1/8/2014 8R55BNW9H5 1426621   7.5
10 1/8/2014 8R55BNW9H5 1426624   7.5
11 2/8/2014 4R72B7K9ZN 1426626   7.5
12 2/8/2014 4R72B7K9ZN 1426627   7.5
13 2/8/2014 8R55BNW9H5 1426638   7.2
14 2/8/2014 8R55BNW9H5 1426639   7.2
15 2/8/2014 4R60B6K6ZN 1426699   7.5
16 3/8/2014 4R60B6K6ZN 1426701   1.5
17 3/8/2014 4R72B7K9ZN 1426703   7.5
18 3/8/2014 4R60B6K6ZN 1426704   7.5
19 3/8/2014 4R72B7K9ZN 1426705   7.5
20 3/8/2014 4R72B7K9ZN 1426706   7.2

和类似的第二个数据帧如下。

>df_2
   Date      Mcode X28days X7days
1  1/8/2014 3R72B7K8ZN    64.0   51.1
2  1/8/2014 3R72B7K8ZN    65.0   51.6
3  1/8/2014 8R55BNW9H5    75.4   58.4
4  1/8/2014 8R55BNW9H5    78.7   57.1
5  2/8/2014 4R72B7K9ZN    75.7   58.8
6  2/8/2014 4R72B7K9ZN    73.9   56.9
7  2/8/2014 8R55BNW9H5    77.3   60.8
8  2/8/2014 4R60B6K6ZN    62.6   48.5
9  3/8/2014 4R72B7K9ZN    71.2   56.1
10 4/8/2014 4R60B6K6ZN    59.3   46.8
11 4/8/2014 4R60B6K7ZN    68.5   51.2

我想合并 df_1df_2,这样得到的 df_3(行数与 df_1 的行数相同)应该如下所示

>df_3
       Date      Mcode    TNo. BSize X28days X7days
1  1/8/2014 3R72B7K8ZN 1426576   7.2    64.0   51.1
2  1/8/2014 3R72B7K8ZN 1426578   7.5    64.0   51.1
3  1/8/2014 3R72B7K8ZN 1426579   7.5    64.0   51.1
4  1/8/2014 8R55BNW9H5 1426581   7.2    75.4   58.4
5  1/8/2014 8R55BNW9H5 1426582   7.5    75.4   58.4
6  1/8/2014 8R55BNW9H5 1426584   7.5    75.4   58.4
7  1/8/2014 3R72B7K8ZN 1426606   7.5    65.0   51.6
8  1/8/2014 3R72B7K8ZN 1426610   7.2    65.0   51.6
9  1/8/2014 8R55BNW9H5 1426621   7.5    78.7   57.1
10 1/8/2014 8R55BNW9H5 1426624   7.5    78.7   57.1
11 2/8/2014 4R72B7K9ZN 1426626   7.5    75.7   58.8
12 2/8/2014 4R72B7K9ZN 1426627   7.5    75.7   58.8
13 2/8/2014 8R55BNW9H5 1426638   7.2    77.3   60.8
14 2/8/2014 8R55BNW9H5 1426639   7.2    77.3   60.8
15 2/8/2014 4R60B6K6ZN 1426699   7.5    62.6   48.5
16 3/8/2014 4R60B6K6ZN 1426701   1.5      NA     NA
17 3/8/2014 4R72B7K9ZN 1426703   7.5    71.2   56.1
18 3/8/2014 4R60B6K6ZN 1426704   7.5      NA     NA
19 3/8/2014 4R72B7K9ZN 1426705   7.5    71.2   56.1
20 3/8/2014 4R72B7K9ZN 1426706   7.2    71.2   56.1

如果我们运行df_3%>%filter(Date=="1/8/2014", Mcode=="3R72B7K8ZN"),它给出


      Date      Mcode    TNo. BSize X28days X7days
1 1/8/2014 3R72B7K8ZN 1426576   7.2      64   51.1
2 1/8/2014 3R72B7K8ZN 1426578   7.5      64   51.1
3 1/8/2014 3R72B7K8ZN 1426579   7.5      64   51.1
4 1/8/2014 3R72B7K8ZN 1426606   7.5      65   51.6
5 1/8/2014 3R72B7K8ZN 1426610   7.2      65   51.6

df_2 的前两行在 df_3 的最终或合并数据集中平均分布。所有行都可以看到类似的合并模式。 笔记: 我希望对大小大于 30x5000(列 x 行)的完整数据集进行这种类型的合并。 在完整的数据 日期是2014年和2015年(700多个日期),Mcode有30多种不同的类型。

谁能帮我解决一下,感激不尽

解决此问题的一种方法是向您的两个数据帧添加一个额外的 id 列。
我在这里称它为 obs_id。此 id 在 DateMcode 的每组中设置,以计算各自其他数据框中的最大观察数,然后从 1“重置”。
这看起来如下:

library(dplyr)

df_1a <- df_1 %>%
  left_join(
    df_2 %>% count(Date, Mcode, name = "df_2_obs_n"),
    by = c("Date", "Mcode")
  ) %>%
  group_by(Date, Mcode) %>%
  mutate(
    obs_id = first(df_2_obs_n) %>%
      coalesce(0) %>%
      seq() %>%
      rep(length.out = n())
  ) %>%
  ungroup() %>%
  select(-df_2_obs_n)

df_2a <- df_2 %>%
  left_join(
    df_1a %>% count(Date, Mcode, name = "df_1_obs_n"),
    by = c("Date", "Mcode")
  ) %>%
  group_by(Date, Mcode) %>%
  mutate(
    obs_id = first(df_1_obs_n) %>%
      coalesce(0) %>%
      seq() %>%
      rep(length.out = n())
  ) %>%
  ungroup() %>%
  select(-df_1_obs_n)

对于您的 Date=="1/8/2014", Mcode=="3R72B7K8ZN" 示例组,这会生成如下列:

> df_1a %>% filter(Date=="1/8/2014", Mcode=="3R72B7K8ZN")
# A tibble: 5 x 5
  Date     Mcode         TNo. BSize obs_id
  <chr>    <chr>        <int> <dbl>  <int>
1 1/8/2014 3R72B7K8ZN 1426576   7.2      1
2 1/8/2014 3R72B7K8ZN 1426578   7.5      2
3 1/8/2014 3R72B7K8ZN 1426579   7.5      1
4 1/8/2014 3R72B7K8ZN 1426606   7.5      2
5 1/8/2014 3R72B7K8ZN 1426610   7.2      1

> df_2a %>% filter(Date=="1/8/2014", Mcode=="3R72B7K8ZN")
# A tibble: 2 x 5
  Date     Mcode      X28days X7days obs_id
  <chr>    <chr>        <dbl>  <dbl>  <int>
1 1/8/2014 3R72B7K8ZN      64   51.1      1
2 1/8/2014 3R72B7K8ZN      65   51.6      2

现在,您可以基于该列进行左连接,您将看到 df_2a 中的列“均匀分布”,至少与您预期的一样多。

df_3a <- df_1a %>%
  left_join(df_2a, by = c("Date", "Mcode", "obs_id"))

> df_3a %>% filter(Date=="1/8/2014", Mcode=="3R72B7K8ZN")
# A tibble: 5 x 7
  Date     Mcode         TNo. BSize obs_id X28days X7days
  <chr>    <chr>        <int> <dbl>  <int>   <dbl>  <dbl>
1 1/8/2014 3R72B7K8ZN 1426576   7.2      1      64   51.1
2 1/8/2014 3R72B7K8ZN 1426578   7.5      2      65   51.6
3 1/8/2014 3R72B7K8ZN 1426579   7.5      1      64   51.1
4 1/8/2014 3R72B7K8ZN 1426606   7.5      2      65   51.6
5 1/8/2014 3R72B7K8ZN 1426610   7.2      1      64   51.1

由于 obs_iddf_1a 中的模式 1,2,1,2,1 中重复,df_2a 中的 table 行的连接顺序是与您上面描述的 df_3 不同。如果这是一个问题,您可以像这样调整 rep(...) 调用:

df_1b <- df_1 %>%
  left_join(
    df_2 %>%
      count(Date, Mcode, name = "df_2_obs_n"),
    by = c("Date", "Mcode")
  ) %>%
  group_by(Date, Mcode) %>%
  mutate(
    df_2_obs_n = coalesce(df_2_obs_n, 1),
    obs_id = first(df_2_obs_n) %>%
      seq() %>%
      rep(length.out = n(), each = ceiling(n()/first(df_2_obs_n)))
  ) %>%
  ungroup() %>%
  select(-df_2_obs_n)

df_2b <- df_2 %>%
  left_join(
    df_1a %>%
      count(Date, Mcode, name = "df_1_obs_n"),
    by = c("Date", "Mcode")
  ) %>%
  group_by(Date, Mcode) %>%
  mutate(
    df_1_obs_n = coalesce(df_1_obs_n, 1),
    obs_id = first(df_1_obs_n) %>%
      seq() %>%
      rep(length.out = n(), each = ceiling(n()/first(df_1_obs_n)))
  ) %>%
  ungroup() %>%
  select(-df_1_obs_n)

现在,obs_id 重复模式是 1,1,1,2,2,您将得到您描述的结果。

df_3b <- df_1b %>%
    left_join(df_2b, by = c("Date", "Mcode", "obs_id"))

> df_3b %>% filter(Date=="1/8/2014", Mcode=="3R72B7K8ZN")
# A tibble: 5 x 7
  Date     Mcode         TNo. BSize obs_id X28days X7days
  <chr>    <chr>        <int> <dbl>  <int>   <dbl>  <dbl>
1 1/8/2014 3R72B7K8ZN 1426576   7.2      1      64   51.1
2 1/8/2014 3R72B7K8ZN 1426578   7.5      1      64   51.1
3 1/8/2014 3R72B7K8ZN 1426579   7.5      1      64   51.1
4 1/8/2014 3R72B7K8ZN 1426606   7.5      2      65   51.6
5 1/8/2014 3R72B7K8ZN 1426610   7.2      2      65   51.6