如何在 for 循环中获取 lil_matrix 元素的索引?

How to get indices of lil_matrix elements in a for loop?

我使用 scipy.sparse.lil_matrix 创建了一个稀疏矩阵:

import scipy.sparse as sp
test = sp.lil_matrix((3,3))
test[0,0]=1

我可以循环并打印非零元素:

for el in test:
    print(el)

打印出 (0, 0) 1.0。如何在不打印的情况下访问这两条信息?换句话说,lil_matrix 的元素和 return 索引和值的适当方法是什么?做 el.data returns array([list([])], dtype=object).

请注意,我使用的是 lil_matrix,因为我需要在一个非常大的双 for 循环中为其分配非零值。

都在.data.rows

from scipy import sparse
arr = sparse.random(10,5,format='lil', density=0.5)

对于这个包含 25 个元素的 10x5 数组:

>>> arr
<10x5 sparse matrix of type '<class 'numpy.float64'>'
    with 25 stored elements in List of Lists format>

>>> arr.data.shape
(10,)

>>> arr.data
array([list([0.7656088763162588, 0.7262695483137545]),
       list([0.5229054168281109, 0.6329489698531673, 0.9090750679268123]),
       list([0.3285250285217297, 0.12678874412598085, 0.49074613569184733]),
       list([0.9376762935882884]), list([0.7783159122917774]),
       list([0.8750078624527947, 0.017065437987856757, 0.7161352157970525]),
       list([0.6849637433019786, 0.05732598765212671, 0.09948536587262824]),
       list([0.5683250727980487, 0.960851197599538, 0.7540173942047833]),
       list([0.5891879469424754, 0.7901005027272154, 0.5829700379167293]),
       list([0.6266097436787399, 0.8843420498719459, 0.9040791506861361])],
      dtype=object)

.data 数组的每个元素都是一个列表,其中包含该行的值。

>>> arr.rows
array([list([0, 4]), list([0, 1, 4]), list([1, 3, 4]), list([1]),
       list([3]), list([0, 1, 2]), list([0, 1, 4]), list([1, 2, 3]),
       list([0, 2, 4]), list([0, 1, 3])], dtype=object)

.rows 数组的每个元素都是 .data.

中每个 non-zero 值的列索引列表

Note that I'm using lil_matrix because I will need to assign nonzero values to it within a very large, double for loop.

这几乎肯定不是一个好主意。 lil_matrix 的开销意味着如果它的稀疏度不少于 5%,那么填充密集数组几乎肯定会更好。即使那样,它也很不确定。这是一种非常糟糕的数据存储格式。

编辑:

>>>> for r in arr:
>>>>     print(r.data)

[list([0.7656088763162588, 0.7262695483137545])]
[list([0.5229054168281109, 0.6329489698531673, 0.9090750679268123])]
[list([0.3285250285217297, 0.12678874412598085, 0.49074613569184733])]
[list([0.9376762935882884])]
[list([0.7783159122917774])]
[list([0.8750078624527947, 0.017065437987856757, 0.7161352157970525])]
[list([0.6849637433019786, 0.05732598765212671, 0.09948536587262824])]
[list([0.5683250727980487, 0.960851197599538, 0.7540173942047833])]
[list([0.5891879469424754, 0.7901005027272154, 0.5829700379167293])]
[list([0.6266097436787399, 0.8843420498719459, 0.9040791506861361])]

编辑 2:

我不知道你的实际功能或目标是什么,但如果你知道你有多少 non-zero 项,你可以预先分配你需要的数组并跳过整个 lil 事情。

import numpy as np

N = 10000
data, rows, cols = np.zeros(N), np.zeros(N), np.zeros(N)

for i, r in enumerate(_):
    for j, c in enumerate(_):
        _idx = i * len(cols) + j
        data[_idx] = some_data_function()
        rows[_idx] = r
        cols[_idx] = c

arr = sparse.csr_matrix((data, (rows, cols)))

您寻找的显示很像 coo 稀疏矩阵的 str 显示。

In [216]: M = (sparse.random(5,5,.2)*10).astype(int)
In [217]: M
Out[217]: 
<5x5 sparse matrix of type '<class 'numpy.int64'>'
    with 5 stored elements in COOrdinate format>
In [218]: print(M)   # str(M)
  (0, 0)    0
  (0, 2)    8
  (1, 3)    8
  (1, 4)    8
  (4, 4)    4

稀疏矩阵有一个 nonzero 方法来显示非零元素的坐标。

In [219]: M.nonzero()
Out[219]: (array([0, 1, 1, 4], dtype=int32), array([2, 3, 4, 4], dtype=int32))

对于 coo,值存储为 3 个数组:

In [220]: M.data, M.row, M.col
Out[220]: 
(array([0, 8, 8, 8, 4]),
 array([0, 0, 1, 1, 4], dtype=int32),
 array([0, 2, 3, 4, 4], dtype=int32))

coo 格式中这些元素的顺序没有限制。甚至可以有重复项,尽管在转换为显示或 csr 格式时会将它们相加。

当我们将其转换为 lil 格式时,数据现在存储在 2 个列表数组中,每行一个列表:

In [221]: Ml = M.tolil()
In [222]: Ml.data
Out[222]: 
array([list([0, 8]), list([8, 8]), list([]), list([]), list([4])],
      dtype=object)
In [223]: Ml.rows
Out[223]: 
array([list([0, 2]), list([3, 4]), list([]), list([]), list([4])],
      dtype=object)

它也有nonzero,但看代码(它使用coo格式):

In [224]: Ml.nonzero()
Out[224]: (array([0, 1, 1, 4], dtype=int32), array([2, 3, 4, 4], dtype=int32))
In [225]: Ml.nonzero??
Signature: Ml.nonzero()
Source:   
    def nonzero(self):
         ...
        # convert to COOrdinate format
        A = self.tocoo()
        nz_mask = A.data != 0
        return (A.row[nz_mask], A.col[nz_mask])
File:      /usr/local/lib/python3.6/dist-packages/scipy/sparse/base.py
Type:      method

实际上,这是所有稀疏格式的通用 nonzeronz_mask 部分允许矩阵可能有 0 个未被清理的值。

虽然 lil 旨在轻松逐个元素更新,但我们通常建议尽可能从 coo 样式的输入数组创建矩阵。通常可以更有效地创建这些数组。甚至列表追加或扩展也可以更快。

更多地关注 Ml 矩阵的迭代 - 它为每一行创建一个 lil

In [230]: [x for x in Ml]
Out[230]: 
[<1x5 sparse matrix of type '<class 'numpy.int64'>'
    with 2 stored elements in List of Lists format>,
 <1x5 sparse matrix of type '<class 'numpy.int64'>'
    with 2 stored elements in List of Lists format>,
 <1x5 sparse matrix of type '<class 'numpy.int64'>'
    with 0 stored elements in List of Lists format>,
 <1x5 sparse matrix of type '<class 'numpy.int64'>'
    with 0 stored elements in List of Lists format>,
 <1x5 sparse matrix of type '<class 'numpy.int64'>'
    with 1 stored elements in List of Lists format>]

我们可以显示每一行的数据:

In [231]: [((i,x.rows[0]),x.data[0]) for i,x in enumerate(Ml)]
Out[231]: 
[((0, [0, 2]), [0, 8]),
 ((1, [3, 4]), [8, 8]),
 ((2, []), []),
 ((3, []), []),
 ((4, [4]), [4])]

或过滤掉空行:

In [232]: [((i,x.rows[0]),x.data[0]) for i,x in enumerate(Ml) if x.data[0]]
Out[232]: [((0, [0, 2]), [0, 8]), ((1, [3, 4]), [8, 8]), ((4, [4]), [4])]

我们需要另一次迭代来分离每行中的元素。

关于稀疏数组与密集数组的使用,一条经验法则是稀疏度(非零元素的百分比)应小于 10% 才值得使用稀疏格式。但这在很大程度上取决于您的使用和关注。

从简单的数据存储角度来看,请注意 coo 格式必须为每个非零项使用 3 个数字,而不是密集数组仅使用 1 个数字。稀疏矩阵乘法对于 csr 格式比较好。其他可以只关注 data 值(例如 sin)的计算也相对有效。但是如果数学必须比较2个矩阵的稀疏性,比如加法和element-wise乘法,稀疏的情况更糟。

索引、切片和求和实际上可能使用矩阵乘法。 coo 格式没有实现这些。 lil 可以很好地完成一些面向行的操作。创建稀疏矩阵的基本操作需要时间。