如何在情节中增加子图的 yticklabel 和主 yticklabel 之间的 space?

How to increase the space between yticklabel of subplot and main yticklabel in plotly?

我正在学习情节并尝试自定义一个子情节。 我需要做以下事情:

剧情

代码

import numpy as np
import pandas as pd


from plotly.subplots import make_subplots
import plotly.graph_objects as go

df = pd.DataFrame({'Month': ['2020-01-01', '2020-02-01', '2020-03-01', '2020-04-01', '2020-05-01', '2020-06-01'],
          'Site A': [0.0006171, 0.0007480000000000001, 0.00041139999999999997, 0.0005422999999999999, 9.35e-05, 0.0011407],
          'Site B': [0.0003927000000000001, 0.0026, 0.0008041000000000001, 0.0005797, 0.0008789000000000001, 0.0004301000000000001],
          'Site C': [0.0075548, 0.0045815000000000005, 0.0033473, 0.0016455999999999999, 0.0023375, 0.00229],
          'Site D': [0.0007854000000000001, 0.0003927000000000001, 0.0013277, 0.0005235999999999999, 0.0008227999999999999, 0.0016082000000000002],
          'Site E': [0.0, 0.0007480000000000001, 0.0, 0.0015520999999999998, 0.0005984000000000001, 0.00014],
          'Site F': [0.0, 0.0007292999999999999, 0.0, 0.0002431, 0.0, 0.0],
          'Site G': [0.0006919000000000001, 0.0008976000000000001, 0.0005422999999999999, 0.0007667, 0.0008414999999999999, 0.0008],
          'Site H': [0.00257, 0.00324, 0.00512, 0.00197, 0.0009199999999999999, 0.0004301000000000001],
          'Site I': [0.0013277, 0.0, 0.0, 0.0, 0.0, 0.0013277]})


df['Month'] = pd.to_datetime(df['Month'])
df = df.set_index('Month')


fig = make_subplots(rows=3,cols=3,
                    start_cell='top-left',
                    column_widths = [1200]*3,
                    x_title = 'Month',
                    y_title = 'Error Rate (%)',
                    subplot_titles=("Site H", "Site E", "Site B",
                                    "Site C", "Site G", "Site F",
                                    "Site D", "Site I", "Site A",
                                    )
                   )

fig.add_scatter(x=df.index, y=df['Site H'],  row=1, col=1, showlegend=False, line=dict(color='darkgreen'),  mode='lines+markers', name='Site H')
fig.add_scatter(x=df.index, y=df['Site E'],  row=1, col=2, showlegend=False, line=dict(color='limegreen'))
fig.add_scatter(x=df.index, y=df['Site B'],  row=1, col=3, showlegend=False, line=dict(color='lightgreen'))

fig.add_scatter(x=df.index, y=df['Site C'],  row=2, col=1, showlegend=False, line=dict(color='black'))
fig.add_scatter(x=df.index, y=df['Site G'],  row=2, col=2, showlegend=False, line=dict(color='gray'))
fig.add_scatter(x=df.index, y=df['Site F'],  row=2, col=3, showlegend=False, line=dict(color='silver'))

fig.add_scatter(x=df.index, y=df['Site D'],  row=3, col=1, showlegend=False, line=dict(color='darkred'))
fig.add_scatter(x=df.index, y=df['Site I'],  row=3, col=2, showlegend=False, line=dict(color='tomato'))
fig.add_scatter(x=df.index, y=df['Site A'],  row=3, col=3, showlegend=False, line=dict(color='lightsalmon'))

fig.update_xaxes(tickangle=90, tickformat="%b")
fig.update_yaxes(tickformat=".2%")

fig.update_yaxes(row=1, col=1, title='Success',    color='darkgreen' )
fig.update_yaxes(row=2, col=1, title='Status Quo', color='black')
fig.update_yaxes(row=3, col=1, title=dict(text='Watch', standoff=10),      color='darkred')

fig.update_layout(
    title='2020 Monthy Error Rate by Site',
    title_x=0.5,
    autosize=False,
    width=800,
    height=800,
    margin=dict(
        l=80,
        r=30,
        b=80,
        t=80,
        pad=0
    ),
    paper_bgcolor="LightSteelBlue",
)


fig.show()

1。 Y-axis标题颜色

为了设置y-axis标题颜色,更改

fig.update_yaxes(row=1, col=1, title = dict(text = 'Success', color='darkgreen'))

对此:

fig.update_yaxes(row=1, col=1, title='Success')
fig.update_yaxes(row=1, col=1, title_font_color="darkgreen")

您的原始方法将与该特定子图关联的 所有 文本属性的颜色设置为 "darkgreen"。建议的方法只改变坐标轴标题的颜色,其余不变。

2。在主要 y-tick 标签和子图 y-tick 标签之间增加 space。

似乎最好的方法是删除 make_subplotsy_title 的定义,因为该特定属性似乎是 a bit rigid。然后使用 margin=dict(l=120...) 在子图左侧留出更多空间,并在适当的位置使用 fig.add_annotation 包含注释。如果你实际上想显示 'Erro Rate %' outside 'Status Quo' 你可以使用:

fig.add_annotation(dict(font=dict(color="black",size=14),
                            x=-0.16,
                            y=0.5,
                            showarrow=False,
                            text='Error Rate (%)',
                            textangle=-90,
                            xref="paper",
                            yref="paper"
                           )
                  )

情节

完整代码

import numpy as np
import pandas as pd


from plotly.subplots import make_subplots
import plotly.graph_objects as go

df = pd.DataFrame({'Month': ['2020-01-01', '2020-02-01', '2020-03-01', '2020-04-01', '2020-05-01', '2020-06-01'],
          'Site A': [0.0006171, 0.0007480000000000001, 0.00041139999999999997, 0.0005422999999999999, 9.35e-05, 0.0011407],
          'Site B': [0.0003927000000000001, 0.0026, 0.0008041000000000001, 0.0005797, 0.0008789000000000001, 0.0004301000000000001],
          'Site C': [0.0075548, 0.0045815000000000005, 0.0033473, 0.0016455999999999999, 0.0023375, 0.00229],
          'Site D': [0.0007854000000000001, 0.0003927000000000001, 0.0013277, 0.0005235999999999999, 0.0008227999999999999, 0.0016082000000000002],
          'Site E': [0.0, 0.0007480000000000001, 0.0, 0.0015520999999999998, 0.0005984000000000001, 0.00014],
          'Site F': [0.0, 0.0007292999999999999, 0.0, 0.0002431, 0.0, 0.0],
          'Site G': [0.0006919000000000001, 0.0008976000000000001, 0.0005422999999999999, 0.0007667, 0.0008414999999999999, 0.0008],
          'Site H': [0.00257, 0.00324, 0.00512, 0.00197, 0.0009199999999999999, 0.0004301000000000001],
          'Site I': [0.0013277, 0.0, 0.0, 0.0, 0.0, 0.0013277]})


df['Month'] = pd.to_datetime(df['Month'])
df = df.set_index('Month')


fig = make_subplots(rows=3,cols=3,
                    start_cell='top-left',
                    column_widths = [1200]*3,
                    x_title = 'Month',
                    #y_title = 'Error Rate (%)',
                    subplot_titles=("Site H", "Site E", "Site B",
                                    "Site C", "Site G", "Site F",
                                    "Site D", "Site I", "Site A",
                                    )
                   )

fig.add_scatter(x=df.index, y=df['Site H'],  row=1, col=1, showlegend=False, line=dict(color='darkgreen'),  mode='lines+markers', name='Site H')
fig.add_scatter(x=df.index, y=df['Site E'],  row=1, col=2, showlegend=False, line=dict(color='limegreen'))
fig.add_scatter(x=df.index, y=df['Site B'],  row=1, col=3, showlegend=False, line=dict(color='lightgreen'))

fig.add_scatter(x=df.index, y=df['Site C'],  row=2, col=1, showlegend=False, line=dict(color='black'))
fig.add_scatter(x=df.index, y=df['Site G'],  row=2, col=2, showlegend=False, line=dict(color='gray'))
fig.add_scatter(x=df.index, y=df['Site F'],  row=2, col=3, showlegend=False, line=dict(color='silver'))

fig.add_scatter(x=df.index, y=df['Site D'],  row=3, col=1, showlegend=False, line=dict(color='darkred'))
fig.add_scatter(x=df.index, y=df['Site I'],  row=3, col=2, showlegend=False, line=dict(color='tomato'))
fig.add_scatter(x=df.index, y=df['Site A'],  row=3, col=3, showlegend=False, line=dict(color='lightsalmon'))

fig.update_xaxes(tickangle=90, tickformat="%b")
fig.update_yaxes(tickformat=".2%")

fig.update_yaxes(row=1, col=1, title='Success')
fig.update_yaxes(row=1, col=1, title_font_color="darkgreen", autorange = True)
##fig.update_yaxes(row=1, col=1, title = dict(text = 'Success', color='darkgreen'))

fig.update_yaxes(row=2, col=1, title=dict(text='Status Quo',standoff=10), color='black', autorange = True)
fig.update_yaxes(row=3, col=1, title=dict(text='Watch', standoff=10), color='darkred', autorange = True)

fig.update_layout(
    title='2020 Monthy Error Rate by Site',
    title_x=0.5,
    autosize=False,
    width=800,
    height=800,
    margin=dict(
        l=120,
        r=30,
        b=80,
        t=80,
        pad=0
    ),
    paper_bgcolor="LightSteelBlue",
)

fig.add_annotation(dict(font=dict(color="black",size=14),
                            x=-0.16,
                            y=0.5,
                            showarrow=False,
                            text='Error Rate (%)',
                            textangle=-90,
                            xref="paper",
                            yref="paper"
                           )
                  )


fig.show()