如何使用周数按周显示数据?

How to show data by week with weeknumber?

我有一大堆日期和数字,如下所示:

 1.1.2018 0:00;2590
 3.1.2018 1:00;2530
 4.2.2018 2:00;1700
 6.2.2018 3:00;2340
 18.3.2018 4:00;1800
 15.4.2018 5:00;2850
 ...

我需要将具有相同周数的所有数字加在一起,并且一周内的总数 return 如下:

0;0
1;549730
2;645010
3;681320
4;677060
5;698450
...etc
52;576280
53;81640

到目前为止,这是我的代码,我已经将日期和数字分开放在它们自己的列表中,但不确定如何从这里继续。

import datetime

def main():
    file = open("2018Electricity.txt", "r")
    line = file.readline()
    time_list = []
    electricity_list = []
    total = []

    for i in file:
        time = i.strip().split(';')[0]
        electricity = i.strip().split(';')[1]
        time_list.append(datetime.strptime(time, '%d.%m.%Y %H:%M'))
        electricity_list.append(electricity)
        
    file.close()

main()

该任务要求我有 0-53 周并使用列表和 strftime %W。

这是完整的代码(代码中以注释形式提供的解释):

from datetime import datetime #You messed up with the import statement. It should be from datetime import datetime instead of import datetime

def main():
    file = open("2018Electricity.txt", "r")
    line = file.readline()
    time_list = []
    electricity_list = []
    total = []

    for i in file:
        time = i.strip().split(';')[0]
        electricity = i.strip().split(';')[1]
        datee = datetime.strptime(time, '%d.%m.%Y %H:%M')
        
        if  datee.month != 12:
            time_list.append(datee.isocalendar()[1])
        else:
            if datee.isocalendar()[1] == 1:
                time_list.append(53)
            else:
                time_list.append(datee.isocalendar()[1])

        electricity_list.append(int(electricity)) #Converts electricity to an integer and appends it to electricity_list

    week_numbers = list(set(time_list)) #Removes all repeated week numbers

    for week_number in week_numbers: #Iterates over the week_numbers
        curr_elec = 0
        for week,elec in zip(time_list,electricity_list): #Creates an iterable out of time_list and electricty_list
            if week == week_number:
                curr_elec += elec #Running total of the electricity for the current week
        print(f"{week_number};{curr_elec}")

    file.close()

main()

输出:

1;5120
5;1700
6;2340
11;1800
15;2850

对我来说,pandas DataFrame 似乎是完成这项工作的合适工具。 Read the csv to a df, parse the date/time column to datetime, groupby 周数并使用总和作为 aggfunc:

from io import StringIO # for demo only
import pandas as pd

data = """datetime;values
1.1.2018 0:00;2590
3.1.2018 1:00;2530
4.2.2018 2:00;1700
6.2.2018 3:00;2340
18.3.2018 4:00;1800
15.4.2018 5:00;2850"""
 
 
df = pd.read_csv(StringIO(data), sep=';', parse_dates=['datetime'], dayfirst=True)

df.groupby(df.datetime.dt.isocalendar().week)['values'].sum()

Out[8]: 
week
1     5120
5     1700
6     2340
11    1800
15    2850
Name: values, dtype: int64

您可以方便地将此数据写入 csv,参见 pd.to_csv