如何用cv2正确实现高斯模糊?
How to implement Gaussian Blur with cv2 correctly?
我收到以下错误
error Traceback (most recent call last)
<ipython-input-10-2d3a348b0b9b> in <module>()
25
26 #gaussian blur (sigma = 1)
---> 27 gaus_blur1 = cv2.GaussianBlur(img,(0,0), 1, 1)
28 cv2_imshow(gaus_blur1[2000])
29
error: OpenCV(4.1.2) /io/opencv/modules/core/src/matrix.cpp:757: error: (-215:Assertion failed) dims <= 2 && step[0] > 0 in function 'locateROI'
当我想做的时候
for k in range (7165):
img[k] = cv2.imread('/content/FIGURE/figure' + str(k) +'.png', 1)
#storing images into array of integers
img_neg = 255 - img #taking the negative
#cv2_imshow(img_neg[2000])
#voxel form
#gaussian blur (sigma = 1)
gaus_blur1 = cv2.GaussianBlur(img_neg,(0,0), 1, 1)
网上的大多数解决方案都提到没有从文件夹中正确读取图像,但事实并非如此,我尝试绘制了一些并且数据集正是那个。你知道它可能是什么吗?
虽然您的问题中缺乏上下文仍然不太清楚,但您似乎试图模糊图像的阵列,而不是一张二维图像
单独对每张图片进行模糊处理:
# could be some other structure than dicts, but it's not clear from the question
img = {}
gaus_blur = {}
for k in range(7165):
image = cv2.imread("/content/FIGURE/figure" + str(k) + ".png", 1)
img[k] = image # store original image
gaus_blur[k] = cv2.GaussianBlur(255 - image, (0, 0), 1, 1) # store inverse blurred image
我收到以下错误
error Traceback (most recent call last)
<ipython-input-10-2d3a348b0b9b> in <module>()
25
26 #gaussian blur (sigma = 1)
---> 27 gaus_blur1 = cv2.GaussianBlur(img,(0,0), 1, 1)
28 cv2_imshow(gaus_blur1[2000])
29
error: OpenCV(4.1.2) /io/opencv/modules/core/src/matrix.cpp:757: error: (-215:Assertion failed) dims <= 2 && step[0] > 0 in function 'locateROI'
当我想做的时候
for k in range (7165):
img[k] = cv2.imread('/content/FIGURE/figure' + str(k) +'.png', 1)
#storing images into array of integers
img_neg = 255 - img #taking the negative
#cv2_imshow(img_neg[2000])
#voxel form
#gaussian blur (sigma = 1)
gaus_blur1 = cv2.GaussianBlur(img_neg,(0,0), 1, 1)
网上的大多数解决方案都提到没有从文件夹中正确读取图像,但事实并非如此,我尝试绘制了一些并且数据集正是那个。你知道它可能是什么吗?
虽然您的问题中缺乏上下文仍然不太清楚,但您似乎试图模糊图像的阵列,而不是一张二维图像
单独对每张图片进行模糊处理:
# could be some other structure than dicts, but it's not clear from the question
img = {}
gaus_blur = {}
for k in range(7165):
image = cv2.imread("/content/FIGURE/figure" + str(k) + ".png", 1)
img[k] = image # store original image
gaus_blur[k] = cv2.GaussianBlur(255 - image, (0, 0), 1, 1) # store inverse blurred image