RandomWalker 分割算法产生与初始种子相同的分割
RandomWalker Segmentation algorithm results in a segmentation same as the initial seeds
- 我有一张医学图像,我正在尝试分割内部的特定区域。
- 经过几个常规图像处理步骤后,我能够定位区域,并设法获得分割种子,但是当我尝试应用
RandomWalker
算法时,我没有得到很好的分割。
- 你能告诉我这里有什么问题,以及如何纠正它吗?
代码:
# import math
import numpy as np
import matplotlib.pyplot as plt
import cv2 as cv
from skimage.feature import canny
from skimage.transform import hough_circle, hough_circle_peaks
from skimage.draw import circle_perimeter
from skimage.segmentation import watershed, random_walker, active_contour
import skimage.filters as filters
# Read image
img = cv.imread("CT.png")
# Get image center coordinates
img_center = (img.shape[0]//2, img.shape[1]//2)
# Edge detector
edges = canny(img, sigma=2.0, low_threshold=19, high_threshold=57)
# Hough_circle
hough_radii = np.arange(29, 32, 1)
hough_res = hough_circle(edges, hough_radii)
accums, cx, cy, radii = hough_circle_peaks(hough_res, hough_radii,total_num_peaks=4, min_xdistance=70,min_ydistance=200, threshold=0.25)
# Remove false-posite circle
sortX = np.argsort(cx)
cx = cx[sortX[:-1]]
cy = cy[sortX[:-1]]
radii = radii[sortX[:-1]]
#--------------------------------------
# get the closest circle to the centre
#--------------------------------------
dist = []
for idx in range(len(cx)):
dist.append(abs(img_center[1]-cx[idx])+abs(img_center[0]-cy[idx]))
sortD = np.argsort(dist)
Cx = cx[sortD[0]]
Cy = cy[sortD[0]]
radius = radii[sortD[0]]
markers = np.ones(img.shape, dtype=np.uint)
markers[img==0] = 0
markers[Cy-radius//2:Cy+radius//2, Cx-radius//2:Cx+radius//2] = 2
# markers[(Cy-radius//2)+1:(Cy+radius//2)-1, (Cx-radius//2)+1:(Cx+radius//2)-1] = 0
#---------------------------------
labels = random_walker(img, markers)
# print(labels.shape)
# Plot results
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(8, 3.2),
sharex=True, sharey=True)
ax1.imshow(img, cmap='gray')
ax1.axis('off')
ax1.set_title('Noisy data')
ax2.imshow(markers, cmap='magma')
ax2.axis('off')
ax2.set_title('Markers')
ax3.imshow(labels, cmap='gray')
ax3.axis('off')
ax3.set_title('Segmentation')
fig.tight_layout()
plt.show()
#======================================
仅随机游走将标记中的 标签扩展到标签为 0 的区域。您最终得到的图像除了原始正方形中的 2 之外,到处都只包含一个。那是因为标签 2 无处可扩展:它被 1 包围了。
我可以通过以下方式稍微修改分段:
border = 71
surround = (
(dilation(markers, np.ones((border, border))) == 2)
^ (markers==2)
)
markers[surround] = 0
labels = random_walker(img, markers) * (img != 0)
肯定还不够完美。除此之外,您还需要调整边框大小以及 random_walker
的 beta=
和 tol=
参数。
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
from skimage.feature import canny
from skimage.transform import hough_circle, hough_circle_peaks
from skimage.segmentation import watershed, random_walker, active_contour
from skimage.morphology import erosion, dilation
from skimage.restoration import denoise_bilateral
from skimage.color import rgb2gray
from skimage.filters import threshold_local
image=plt.imread('medical_image.png')
plt.imshow(image)
plt.show()
canny_edges=canny(image, sigma=1.5 )
hough_radii = np.arange(29, 32, 1)
hough_res = hough_circle(canny_edges, hough_radii)
#Identifies most prominent circles separated by certain distances in a
#Hough space.
accums, cx, cy, radii = hough_circle_peaks(hough_res, hough_radii,total_num_peaks=4, min_xdistance=70,min_ydistance=200, threshold=0.25)
img_center = (image.shape[0]//2, image.shape[1]//2)
dist = []
for idx in range(len(cx)):
dist.append(abs(img_center[1]-cx[idx])+abs(img_center[0]-cy[idx]))
sortD = np.argsort(dist)
Cx = cx[sortD[0]]
Cy = cy[sortD[0]]
radius = radii[sortD[0]]
markers = np.ones(image.shape, dtype=np.uint)
markers[image==0] = 0
markers[Cy-radius//2:Cy+radius//2, Cx-radius//2:Cx+radius//2] = 2
border = 71
surround = (
(dilation(markers, np.ones((border, border))) == 2)
^ (markers==2)
)
markers[surround] = 0
labels = random_walker(image, markers)
block_size=35
grayscale_image=rgb2gray(image)
denoised_image=denoise_bilateral(grayscale_image,multichannel=False)
local_thresh= threshold_local(grayscale_image, block_size,offset=.01)
#apply the thresholding to the image
binary_global = grayscale_image<local_thresh
plt.clf()
fig, (ax1, ax2, ax3,ax4,ax5) = plt.subplots(1, 5, figsize=(8, 3.2),
sharex=True, sharey=True)
ax1.imshow(canny_edges, cmap='gray')
ax1.axis('off')
ax2.imshow(markers,cmap='gray')
ax2.axis('off')
ax3.imshow(labels,cmap='gray')
ax3.axis('off')
ax4.imshow(binary_global,cmap='gray')
ax4.axis('off')
ax5.imshow(denoised_image,cmap='gray')
ax5.axis('off')
plt.show()
- 我有一张医学图像,我正在尝试分割内部的特定区域。
- 经过几个常规图像处理步骤后,我能够定位区域,并设法获得分割种子,但是当我尝试应用
RandomWalker
算法时,我没有得到很好的分割。 - 你能告诉我这里有什么问题,以及如何纠正它吗?
代码:
# import math
import numpy as np
import matplotlib.pyplot as plt
import cv2 as cv
from skimage.feature import canny
from skimage.transform import hough_circle, hough_circle_peaks
from skimage.draw import circle_perimeter
from skimage.segmentation import watershed, random_walker, active_contour
import skimage.filters as filters
# Read image
img = cv.imread("CT.png")
# Get image center coordinates
img_center = (img.shape[0]//2, img.shape[1]//2)
# Edge detector
edges = canny(img, sigma=2.0, low_threshold=19, high_threshold=57)
# Hough_circle
hough_radii = np.arange(29, 32, 1)
hough_res = hough_circle(edges, hough_radii)
accums, cx, cy, radii = hough_circle_peaks(hough_res, hough_radii,total_num_peaks=4, min_xdistance=70,min_ydistance=200, threshold=0.25)
# Remove false-posite circle
sortX = np.argsort(cx)
cx = cx[sortX[:-1]]
cy = cy[sortX[:-1]]
radii = radii[sortX[:-1]]
#--------------------------------------
# get the closest circle to the centre
#--------------------------------------
dist = []
for idx in range(len(cx)):
dist.append(abs(img_center[1]-cx[idx])+abs(img_center[0]-cy[idx]))
sortD = np.argsort(dist)
Cx = cx[sortD[0]]
Cy = cy[sortD[0]]
radius = radii[sortD[0]]
markers = np.ones(img.shape, dtype=np.uint)
markers[img==0] = 0
markers[Cy-radius//2:Cy+radius//2, Cx-radius//2:Cx+radius//2] = 2
# markers[(Cy-radius//2)+1:(Cy+radius//2)-1, (Cx-radius//2)+1:(Cx+radius//2)-1] = 0
#---------------------------------
labels = random_walker(img, markers)
# print(labels.shape)
# Plot results
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(8, 3.2),
sharex=True, sharey=True)
ax1.imshow(img, cmap='gray')
ax1.axis('off')
ax1.set_title('Noisy data')
ax2.imshow(markers, cmap='magma')
ax2.axis('off')
ax2.set_title('Markers')
ax3.imshow(labels, cmap='gray')
ax3.axis('off')
ax3.set_title('Segmentation')
fig.tight_layout()
plt.show()
#======================================
仅随机游走将标记中的 标签扩展到标签为 0 的区域。您最终得到的图像除了原始正方形中的 2 之外,到处都只包含一个。那是因为标签 2 无处可扩展:它被 1 包围了。
我可以通过以下方式稍微修改分段:
border = 71
surround = (
(dilation(markers, np.ones((border, border))) == 2)
^ (markers==2)
)
markers[surround] = 0
labels = random_walker(img, markers) * (img != 0)
肯定还不够完美。除此之外,您还需要调整边框大小以及 random_walker
的 beta=
和 tol=
参数。
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
from skimage.feature import canny
from skimage.transform import hough_circle, hough_circle_peaks
from skimage.segmentation import watershed, random_walker, active_contour
from skimage.morphology import erosion, dilation
from skimage.restoration import denoise_bilateral
from skimage.color import rgb2gray
from skimage.filters import threshold_local
image=plt.imread('medical_image.png')
plt.imshow(image)
plt.show()
canny_edges=canny(image, sigma=1.5 )
hough_radii = np.arange(29, 32, 1)
hough_res = hough_circle(canny_edges, hough_radii)
#Identifies most prominent circles separated by certain distances in a
#Hough space.
accums, cx, cy, radii = hough_circle_peaks(hough_res, hough_radii,total_num_peaks=4, min_xdistance=70,min_ydistance=200, threshold=0.25)
img_center = (image.shape[0]//2, image.shape[1]//2)
dist = []
for idx in range(len(cx)):
dist.append(abs(img_center[1]-cx[idx])+abs(img_center[0]-cy[idx]))
sortD = np.argsort(dist)
Cx = cx[sortD[0]]
Cy = cy[sortD[0]]
radius = radii[sortD[0]]
markers = np.ones(image.shape, dtype=np.uint)
markers[image==0] = 0
markers[Cy-radius//2:Cy+radius//2, Cx-radius//2:Cx+radius//2] = 2
border = 71
surround = (
(dilation(markers, np.ones((border, border))) == 2)
^ (markers==2)
)
markers[surround] = 0
labels = random_walker(image, markers)
block_size=35
grayscale_image=rgb2gray(image)
denoised_image=denoise_bilateral(grayscale_image,multichannel=False)
local_thresh= threshold_local(grayscale_image, block_size,offset=.01)
#apply the thresholding to the image
binary_global = grayscale_image<local_thresh
plt.clf()
fig, (ax1, ax2, ax3,ax4,ax5) = plt.subplots(1, 5, figsize=(8, 3.2),
sharex=True, sharey=True)
ax1.imshow(canny_edges, cmap='gray')
ax1.axis('off')
ax2.imshow(markers,cmap='gray')
ax2.axis('off')
ax3.imshow(labels,cmap='gray')
ax3.axis('off')
ax4.imshow(binary_global,cmap='gray')
ax4.axis('off')
ax5.imshow(denoised_image,cmap='gray')
ax5.axis('off')
plt.show()