Tensorflow 2.3.1 IndexError: list index out of range
Tensorflow 2.3.1 IndexError: list index out of range
我收到一个错误,IndexError:列表索引超出范围。
它在另一台机器上工作,但在我将它转移到另一台机器后它不再工作了。
Python: 3.8.5
张量流:2.3.1
回溯说:
tensorflow.python.autograph.impl.api.StagingError: in user code:
Load_Model.py:40 detect_fn *
image, shapes = detection_model.preprocess(image)
C:\Users\Tensorflow\tensorflow 2.x\models\research\object_detection\meta_architectures\ssd_meta_arch.py:482 preprocess *
normalized_inputs = self._feature_extractor.preprocess(inputs)
C:\Users\Tensorflow\tensorflow 2.x\models\research\object_detection\models\ssd_resnet_v1_fpn_keras_feature_extractor.py:204 preprocess *
if resized_inputs.shape.as_list()[3] == 3:
IndexError: list index out of range
我的代码:
import tensorflow as tf
import os
import cv2
from object_detection.utils import label_map_util
from object_detection.utils import config_util
from object_detection.utils import visualization_utils as viz_utils
from object_detection.builders import model_builder
model_name = 'ssd_resnet101_v1_fpn_640x640_coco17_tpu-8'
data_dir = os.path.join(os.getcwd(), 'data')
models_dir = os.path.join(data_dir, 'models')
path_to_ckg = os.path.join(models_dir, os.path.join(model_name, 'pipeline.config'))
PATH_TO_CFG = os.path.join(models_dir)
path_to_cktp = os.path.join(models_dir, os.path.join(model_name, 'checkpoint/'))
label_filename = 'mscoco_label_map.pbtxt'
path_to_labels = os.path.join(models_dir, os.path.join(model_name, label_filename))
tf.get_logger().setLevel('ERROR') # Suppress TensorFlow logging (2)
#Enable GPU dynamic memory allocation
gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
#Load pipeline config and build a detection model'
configs = config_util.get_configs_from_pipeline_file(path_to_ckg)
model_config = configs['model']
detection_model = model_builder.build(model_config=model_config, is_training=False)
#Restore checkpoint
ckpt = tf.compat.v2.train.Checkpoint(model=detection_model)
ckpt.restore(os.path.join(path_to_cktp, 'ckpt-0')).expect_partial()
@tf.function
def detect_fn(image):
"""Detect objects in image."""
image, shapes = detection_model.preprocess(image)
prediction_dict = detection_model.predict(image, shapes)
detections = detection_model.postprocess(prediction_dict, shapes)
return detections, prediction_dict, tf.reshape(shapes, [-1])
category_index = label_map_util.create_category_index_from_labelmap(path_to_labels,
use_display_name=True)
cap = cv2.VideoCapture('rtsp://username:pass@192.168.1.103:8000/tcp/av0_1')
import numpy as np
while True:
#Read frame from camera
ret, image_np = cap.read()
#Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
#Things to try:
#Flip horizontally
#image_np = np.fliplr(image_np).copy()
#Convert image to grayscale
#image_np = np.tile(
#np.mean(image_np, 2, keepdims=True), (1, 1, 3)).astype(np.uint8)
input_tensor = tf.convert_to_tensor(np.expand_dims(image_np, 0), dtype=tf.float32)
detections, predictions_dict, shapes = detect_fn(input_tensor)
label_id_offset = 1
image_np_with_detections = image_np.copy()
viz_utils.visualize_boxes_and_labels_on_image_array(
image_np_with_detections,
detections['detection_boxes'][0].numpy(),
(detections['detection_classes'][0].numpy() + label_id_offset).astype(int),
detections['detection_scores'][0].numpy(),
category_index,
use_normalized_coordinates=True,
max_boxes_to_draw=200,
min_score_thresh=.30,
agnostic_mode=False)
#Display output
cv2.imshow('object detection', cv2.resize(image_np_with_detections, (800, 600)))
if cv2.waitKey(25) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
实在想不明白为什么会出现这样的错误
我的代码有什么问题?我应该如何解决这个问题?
在get_model_detection_function函数中定义detect_fn,
像这样:
def get_model_detection_function(model):
"""Get a tf.function for detection."""
@tf.function
def detect_fn(image):
"""Detect objects in image."""
image, shapes = model.preprocess(image)
prediction_dict = model.predict(image, shapes)
detections = model.postprocess(prediction_dict, shapes)
return detections, prediction_dict, tf.reshape(shapes, [-1])
return detect_fn
detect_fn = get_model_detection_function(detection_model)
看看这是否有帮助
你得到的错误是“if resized_inputs.shape.as_list()[3] == 3:”它表示三个输入的形状,即高度、宽度和 RGB 颜色方差
from PIL import Image
def load_image_into_numpy_array(path):
"""Load an image from file into a numpy array.
Puts image into numpy array to feed into tensorflow graph.
Note that by convention we put it into a numpy array with shape
(height, width, channels), where channels=3 for RGB.
Args:
path: the file path to the image
Returns:
uint8 numpy array with shape (img_height, img_width, 3)
"""
return np.array(Image.open(path))
image_np = load_image_into_numpy_array(IMAGE_PATH)
我认为这可行
我收到一个错误,IndexError:列表索引超出范围。
它在另一台机器上工作,但在我将它转移到另一台机器后它不再工作了。
Python: 3.8.5
张量流:2.3.1
回溯说:
tensorflow.python.autograph.impl.api.StagingError: in user code:
Load_Model.py:40 detect_fn *
image, shapes = detection_model.preprocess(image)
C:\Users\Tensorflow\tensorflow 2.x\models\research\object_detection\meta_architectures\ssd_meta_arch.py:482 preprocess *
normalized_inputs = self._feature_extractor.preprocess(inputs)
C:\Users\Tensorflow\tensorflow 2.x\models\research\object_detection\models\ssd_resnet_v1_fpn_keras_feature_extractor.py:204 preprocess *
if resized_inputs.shape.as_list()[3] == 3:
IndexError: list index out of range
我的代码:
import tensorflow as tf
import os
import cv2
from object_detection.utils import label_map_util
from object_detection.utils import config_util
from object_detection.utils import visualization_utils as viz_utils
from object_detection.builders import model_builder
model_name = 'ssd_resnet101_v1_fpn_640x640_coco17_tpu-8'
data_dir = os.path.join(os.getcwd(), 'data')
models_dir = os.path.join(data_dir, 'models')
path_to_ckg = os.path.join(models_dir, os.path.join(model_name, 'pipeline.config'))
PATH_TO_CFG = os.path.join(models_dir)
path_to_cktp = os.path.join(models_dir, os.path.join(model_name, 'checkpoint/'))
label_filename = 'mscoco_label_map.pbtxt'
path_to_labels = os.path.join(models_dir, os.path.join(model_name, label_filename))
tf.get_logger().setLevel('ERROR') # Suppress TensorFlow logging (2)
#Enable GPU dynamic memory allocation
gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
#Load pipeline config and build a detection model'
configs = config_util.get_configs_from_pipeline_file(path_to_ckg)
model_config = configs['model']
detection_model = model_builder.build(model_config=model_config, is_training=False)
#Restore checkpoint
ckpt = tf.compat.v2.train.Checkpoint(model=detection_model)
ckpt.restore(os.path.join(path_to_cktp, 'ckpt-0')).expect_partial()
@tf.function
def detect_fn(image):
"""Detect objects in image."""
image, shapes = detection_model.preprocess(image)
prediction_dict = detection_model.predict(image, shapes)
detections = detection_model.postprocess(prediction_dict, shapes)
return detections, prediction_dict, tf.reshape(shapes, [-1])
category_index = label_map_util.create_category_index_from_labelmap(path_to_labels,
use_display_name=True)
cap = cv2.VideoCapture('rtsp://username:pass@192.168.1.103:8000/tcp/av0_1')
import numpy as np
while True:
#Read frame from camera
ret, image_np = cap.read()
#Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
#Things to try:
#Flip horizontally
#image_np = np.fliplr(image_np).copy()
#Convert image to grayscale
#image_np = np.tile(
#np.mean(image_np, 2, keepdims=True), (1, 1, 3)).astype(np.uint8)
input_tensor = tf.convert_to_tensor(np.expand_dims(image_np, 0), dtype=tf.float32)
detections, predictions_dict, shapes = detect_fn(input_tensor)
label_id_offset = 1
image_np_with_detections = image_np.copy()
viz_utils.visualize_boxes_and_labels_on_image_array(
image_np_with_detections,
detections['detection_boxes'][0].numpy(),
(detections['detection_classes'][0].numpy() + label_id_offset).astype(int),
detections['detection_scores'][0].numpy(),
category_index,
use_normalized_coordinates=True,
max_boxes_to_draw=200,
min_score_thresh=.30,
agnostic_mode=False)
#Display output
cv2.imshow('object detection', cv2.resize(image_np_with_detections, (800, 600)))
if cv2.waitKey(25) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
实在想不明白为什么会出现这样的错误
我的代码有什么问题?我应该如何解决这个问题?
在get_model_detection_function函数中定义detect_fn, 像这样:
def get_model_detection_function(model):
"""Get a tf.function for detection."""
@tf.function
def detect_fn(image):
"""Detect objects in image."""
image, shapes = model.preprocess(image)
prediction_dict = model.predict(image, shapes)
detections = model.postprocess(prediction_dict, shapes)
return detections, prediction_dict, tf.reshape(shapes, [-1])
return detect_fn
detect_fn = get_model_detection_function(detection_model)
看看这是否有帮助
你得到的错误是“if resized_inputs.shape.as_list()[3] == 3:”它表示三个输入的形状,即高度、宽度和 RGB 颜色方差
from PIL import Image
def load_image_into_numpy_array(path):
"""Load an image from file into a numpy array.
Puts image into numpy array to feed into tensorflow graph.
Note that by convention we put it into a numpy array with shape
(height, width, channels), where channels=3 for RGB.
Args:
path: the file path to the image
Returns:
uint8 numpy array with shape (img_height, img_width, 3)
"""
return np.array(Image.open(path))
image_np = load_image_into_numpy_array(IMAGE_PATH)
我认为这可行