将 MULTILINESTRINGs 的特征集合组合成 R 中的一个封闭多边形

Combining a feature collection of MULTILINESTRINGs into one closed polygon in R

编辑: 这个问题现在在这里得到了正确的回答:https://gis.stackexchange.com/a/378085/171458

我有一个包含 262 行 MULTILINESTRING 的 shapefile。结合这个 shapefile(北极地区的政治边界)包裹了世界,我想检查一大组坐标是否落在这个 shapefile 中。我知道该怎么做,但这确实需要一个封闭的多边形,而不是线条的组合。我的一些解决方案已经取得了很大进展,但 none 确实有效。

我看过这个:https://gis.stackexchange.com/questions/290170/convert-a-linestring-into-a-closed-polygon-when-the-points-are-not-in-order and this page: https://gis.stackexchange.com/questions/332427/converting-points-to-polygons-by-group

shapefile 可以在这里下载:https://www.amap.no/work-area/document/868

我也把它贴在这里:https://gis.stackexchange.com/questions/378010/combining-a-feature-collection-of-multilinestrings-into-one-closed-polygon-in-r,但我也在这里问,因为我只有 R 可用于此任务。

library(sf)
library(tidyverse)
library(concaveman)

polar_projection <- "+proj=stere +lat_0=90 +lat_ts=71 +lon_0=0 +k=1 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0"
amap <- read_sf("amaplim_geo_nw.shp", layer = "amaplim_geo_nw")
amap_transformed <- st_transform(amap, crs = polar_projection)

amap_transformed
Simple feature collection with 262 features and 8 fields
geometry type:  MULTILINESTRING
dimension:      XY
bbox:           xmin: -4358644 ymin: -3324819 xmax: 2893297 ymax: 4379941
CRS:            +proj=stere +lat_0=90 +lat_ts=71 +lon_0=0 +k=1 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0
# A tibble: 262 x 9
   FNODE_ TNODE_ LPOLY_ RPOLY_  LENGTH AMAPLIM3G_ AMAPLIM3G1 STATUS                                                                         geometry
 *  <dbl>  <dbl>  <dbl>  <dbl>   <dbl>      <dbl>      <dbl>  <int>                                                            <MULTILINESTRING [m]>
 1     34     37      0      0 242366.          1      16682      1                                       ((-538630.6 -3054726, -463882.6 -3300696))
 2     38     36      0      0 215303.          2      16683      1                                       ((-235293.1 -3324819, -218966.3 -3094112))
 3     37     38      0      0 227471.          3          5      1 ((-463882.6 -3300696, -442961.7 -3303569, -417752.4 -3306851, -391767.9 -331003~
 4    386    386      0      0   4822.          4       4382      1 ((-3397144 278632.8, -3398147 277487.9, -3396967 276827.8, -3396465 277740.4, -~
 5    387    388      0      0  13976.          5       4499      1 ((-3526696 268595.1, -3523913 268160.4, -3522760 267883.9, -3520248 266594.5, -~
 6    388    389      0      0  20817.          6       4499      1 ((-3511875 266079.8, -3509774 265407.4, -3507925 263556.7, -3506566 262993.4, -~
 7    389    386      0      0 168362.          7       4382      1 ((-3490612 262851.4, -3488809 262562.4, -3485696 261529.9, -3482610 260126.9, -~
 8    391    387      0      0 568338.          8       4499      1 ((-3665413 25038.86, -3663223 25042.43, -3662560 26120.65, -3662054 27060.08, -~
 9    392    391      0      0  29253.          9       4499      1 ((-3682065 -2.25454e-10, -3679368 2426.171, -3677501 4582.511, -3676795 5716.63~
10    393    392      0      0 259118.         10       4499      1 ((-3805480 -196918.1, -3805796 -195642.3, -3805842 -193614.8, -3805680 -192121.~
# ... with 252 more rows

这几乎可行,但只是一个近似值,尤其是在图的底部,有一大块是不正确的。

amap_transformed_poly <- concaveman(amap_transformed, concavity = 1)

ggplot() +
  geom_sf(data = amap_transformed,
          fill = NA,
          col = "red",
          size = 1) +
  geom_sf(data = amap_transformed_poly,
          fill = "blue",
          alpha = .3,
          col = NA,
          size = 1)

这段代码感觉更符合逻辑。投线点,合并点,然后创建多边形,但也没有产生正确的结果。

amap_transformed_poly_2 <- st_cast(st_combine(st_cast(amap_transformed, to = "POINT")),  to = "POLYGON")

ggplot() +
  geom_sf(data = amap_transformed,
          fill = NA,
          col = "red",
          size = 1) +
  geom_sf(data = amap_transformed_poly_2, 
          fill = "green",
          alpha = .3,
          col = NA,
          size = 10)

此问题现已在此处得到正确回答:https://gis.stackexchange.com/a/378085/171458,请参阅 post 以获得出色的解决方案和解释(不是我做的)。