AI - Keras 建筑模型

AI - Keras building model

输入 X = [[1,1,1,1,1], [1,2,1,3,7], [3,1,5, 7,8]] 等.. 输出Y = [[0.77],[0.63],[0.77],[1.26]]等..

输入x表示一些组合例子

["car", "black", "sport", "xenon", "5dor"] 
["car", "red", "sport", "noxenon", "3dor"] etc...

输出表示组合的一些分数。

我需要什么?我需要预测组合的好坏....

数据集大小 10k..

型号:

model.add(Dense(20, input_dim = 5, activation = 'relu'))
model.add(Dense(20, activation = 'relu'))
model.add(Dense(1, activation = 'linear'))

优化器 = adam,损失 = mse,验证拆分 0.2,纪元 30

Tr:

Epoch 1/30
238/238 [==============================] - 0s 783us/step - loss: 29.8973 - val_loss: 19.0270
Epoch 2/30
238/238 [==============================] - 0s 599us/step - loss: 29.6696 - val_loss: 19.0100
Epoch 3/30
238/238 [==============================] - 0s 579us/step - loss: 29.6606 - val_loss: 19.0066
Epoch 4/30
238/238 [==============================] - 0s 583us/step - loss: 29.6579 - val_loss: 19.0050
Epoch 5/30

不好意思...

我需要一些关于如何正确设置或构建模型的好文档...

刚刚尝试重现。我的结果与你的不同。请检查:

import tensorflow as tf
from tensorflow.keras.layers import Input, Dense
from tensorflow.keras import Model
inputA = Input(shape=(5, ))
x = Dense(20, activation='relu')(inputA)
x = Dense(20, activation='relu')(x)
x = Dense(1, activation='linear')(x)
model = Model(inputs=inputA, outputs=x)
model.compile(optimizer = 'adam', loss = 'mse')
input = tf.random.uniform([10000, 5], 0, 10, dtype=tf.int32)
labels = tf.random.uniform([10000, 1])
model.fit(input, labels, epochs=30, validation_split=0.2)

结果:

Epoch 1/30 250/250 [==============================] - 1s 3ms/step - loss: 0.1980 - val_loss: 0.1082

Epoch 2/30 250/250 [==============================] - 1s 2ms/step - loss: 0.0988 - val_loss: 0.0951

Epoch 3/30 250/250 [==============================] - 1s 2ms/step - loss: 0.0918 - val_loss: 0.0916

Epoch 4/30 250/250 [==============================] - 1s 2ms/step - loss: 0.0892 - val_loss: 0.0872

Epoch 5/30 250/250 [==============================] - 0s 2ms/step - loss: 0.0886 - val_loss: 0.0859

Epoch 6/30 250/250 [==============================] - 1s 2ms/step - loss: 0.0864 - val_loss: 0.0860

Epoch 7/30 250/250 [==============================] - 1s 3ms/step - loss: 0.0873 - val_loss: 0.0863

Epoch 8/30 250/250 [==============================] - 1s 2ms/step - loss: 0.0863 - val_loss: 0.0992

Epoch 9/30 250/250 [==============================] - 0s 2ms/step - loss: 0.0876 - val_loss: 0.0865

该模型应该适用于真实人物。