从 xml 文件中提取有关 rts、cts 和 ack 的信息,这些文件是在 ns3 中使用流监视器生成的
Extract the information regarding rts, cts and ack from xml file generated with flow monitor in ns3
在使用ns-3 为IEEE802.11 进行网络仿真时,生成了一个pcap 文件。我能够使用 WireShark 从该 pcap 文件中过滤有关 rts、cts 和 ack 的所有信息。但我需要使用流监视器模块(从生成的 XML 文件)提取相同的信息。但我找不到任何办法。是否可以使用流量监视器获取该信息?
我的代码类似于文件 ns-allinone-3.31/ns-3.31/examples/wireless/wifi-tcp.cc 但启用了 rts/cts 并添加了流量监视器。
#include "ns3/command-line.h"
#include "ns3/config.h"
#include "ns3/string.h"
#include "ns3/log.h"
#include "ns3/yans-wifi-helper.h"
#include "ns3/ssid.h"
#include "ns3/mobility-helper.h"
#include "ns3/on-off-helper.h"
#include "ns3/yans-wifi-channel.h"
#include "ns3/mobility-model.h"
#include "ns3/packet-sink.h"
#include "ns3/packet-sink-helper.h"
#include "ns3/tcp-westwood.h"
#include "ns3/internet-stack-helper.h"
#include "ns3/ipv4-address-helper.h"
#include "ns3/ipv4-global-routing-helper.h"
#include "ns3/flow-monitor.h"
#include "ns3/flow-monitor-module.h"
NS_LOG_COMPONENT_DEFINE ("wifi-tcp");
using namespace ns3;
Ptr<PacketSink> sink; /* Pointer to the packet sink application */
uint64_t lastTotalRx = 0; /* The value of the last total received bytes */
void
CalculateThroughput ()
{
Time now = Simulator::Now (); /* Return the simulator's virtual time. */
double cur = (sink->GetTotalRx () - lastTotalRx) * (double) 8 / 1e5; /* Convert Application RX Packets to MBits. */
std::cout << now.GetSeconds () << "s: \t" << cur << " Mbit/s" << std::endl;
lastTotalRx = sink->GetTotalRx ();
Simulator::Schedule (MilliSeconds (100), &CalculateThroughput);
}
int
main (int argc, char *argv[])
{
uint32_t payloadSize = 1472; /* Transport layer payload size in bytes. */
std::string dataRate = "100Mbps"; /* Application layer datarate. */
std::string tcpVariant = "TcpNewReno"; /* TCP variant type. */
std::string phyRate = "HtMcs7"; /* Physical layer bitrate. */
double simulationTime = 10; /* Simulation time in seconds. */
bool pcapTracing = true; /* PCAP Tracing is enabled or not. */
/* Command line argument parser setup. */
CommandLine cmd (__FILE__);
cmd.AddValue ("payloadSize", "Payload size in bytes", payloadSize);
cmd.AddValue ("dataRate", "Application data ate", dataRate);
cmd.AddValue ("tcpVariant", "Transport protocol to use: TcpNewReno, "
"TcpHybla, TcpHighSpeed, TcpHtcp, TcpVegas, TcpScalable, TcpVeno, "
"TcpBic, TcpYeah, TcpIllinois, TcpWestwood, TcpWestwoodPlus, TcpLedbat ", tcpVariant);
cmd.AddValue ("phyRate", "Physical layer bitrate", phyRate);
cmd.AddValue ("simulationTime", "Simulation time in seconds", simulationTime);
cmd.AddValue ("pcap", "Enable/disable PCAP Tracing", pcapTracing);
cmd.Parse (argc, argv);
tcpVariant = std::string ("ns3::") + tcpVariant;
// Select TCP variant
if (tcpVariant.compare ("ns3::TcpWestwoodPlus") == 0)
{
// TcpWestwoodPlus is not an actual TypeId name; we need TcpWestwood here
Config::SetDefault ("ns3::TcpL4Protocol::SocketType", TypeIdValue (TcpWestwood::GetTypeId ()));
// the default protocol type in ns3::TcpWestwood is WESTWOOD
Config::SetDefault ("ns3::TcpWestwood::ProtocolType", EnumValue (TcpWestwood::WESTWOODPLUS));
}
else
{
TypeId tcpTid;
NS_ABORT_MSG_UNLESS (TypeId::LookupByNameFailSafe (tcpVariant, &tcpTid), "TypeId " << tcpVariant << " not found");
Config::SetDefault ("ns3::TcpL4Protocol::SocketType", TypeIdValue (TypeId::LookupByName (tcpVariant)));
}
/* Configure TCP Options */
std::string RtsCtsThreshold="256";
std::string FragmentationThreshold="1000";
Config::SetDefault("ns3::WifiRemoteStationManager::RtsCtsThreshold",StringValue(RtsCtsThreshold));
Config::SetDefault("ns3::WifiRemoteStationManager::FragmentationThreshold",StringValue(FragmentationThreshold));
Config::SetDefault ("ns3::TcpSocket::SegmentSize", UintegerValue (payloadSize));
WifiMacHelper wifiMac;
WifiHelper wifiHelper;
wifiHelper.SetStandard (WIFI_PHY_STANDARD_80211n_5GHZ);
/* Set up Legacy Channel */
YansWifiChannelHelper wifiChannel;
wifiChannel.SetPropagationDelay ("ns3::ConstantSpeedPropagationDelayModel");
wifiChannel.AddPropagationLoss ("ns3::FriisPropagationLossModel", "Frequency", DoubleValue (5e9));
/* Setup Physical Layer */
YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default ();
wifiPhy.SetChannel (wifiChannel.Create ());
wifiPhy.SetErrorRateModel ("ns3::YansErrorRateModel");
wifiHelper.SetRemoteStationManager ("ns3::ConstantRateWifiManager",
"DataMode", StringValue (phyRate),
"ControlMode", StringValue ("HtMcs0"));
NodeContainer networkNodes;
networkNodes.Create (2);
Ptr<Node> apWifiNode = networkNodes.Get (0);
Ptr<Node> staWifiNode = networkNodes.Get (1);
/* Configure AP */
Ssid ssid = Ssid ("network");
wifiMac.SetType ("ns3::ApWifiMac",
"Ssid", SsidValue (ssid));
NetDeviceContainer apDevice;
apDevice = wifiHelper.Install (wifiPhy, wifiMac, apWifiNode);
/* Configure STA */
wifiMac.SetType ("ns3::StaWifiMac",
"Ssid", SsidValue (ssid));
NetDeviceContainer staDevices;
staDevices = wifiHelper.Install (wifiPhy, wifiMac, staWifiNode);
/* Mobility model */
MobilityHelper mobility;
Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator> ();
positionAlloc->Add (Vector (0.0, 0.0, 0.0));
positionAlloc->Add (Vector (1.0, 1.0, 0.0));
mobility.SetPositionAllocator (positionAlloc);
mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");
mobility.Install (apWifiNode);
mobility.Install (staWifiNode);
/* Internet stack */
InternetStackHelper stack;
stack.Install (networkNodes);
Ipv4AddressHelper address;
address.SetBase ("10.0.0.0", "255.255.255.0");
Ipv4InterfaceContainer apInterface;
apInterface = address.Assign (apDevice);
Ipv4InterfaceContainer staInterface;
staInterface = address.Assign (staDevices);
/* Populate routing table */
Ipv4GlobalRoutingHelper::PopulateRoutingTables ();
/* Install TCP Receiver on the access point */
PacketSinkHelper sinkHelper ("ns3::TcpSocketFactory", InetSocketAddress (Ipv4Address::GetAny (), 9));
ApplicationContainer sinkApp = sinkHelper.Install (apWifiNode);
sink = StaticCast<PacketSink> (sinkApp.Get (0));
/* Install TCP/UDP Transmitter on the station */
OnOffHelper server ("ns3::TcpSocketFactory", (InetSocketAddress (apInterface.GetAddress (0), 9)));
server.SetAttribute ("PacketSize", UintegerValue (payloadSize));
server.SetAttribute ("OnTime", StringValue ("ns3::ConstantRandomVariable[Constant=1]"));
server.SetAttribute ("OffTime", StringValue ("ns3::ConstantRandomVariable[Constant=0]"));
server.SetAttribute ("DataRate", DataRateValue (DataRate (dataRate)));
ApplicationContainer serverApp = server.Install (staWifiNode);
// Flow monitor
Ptr<FlowMonitor> flowMonitor;
FlowMonitorHelper flowHelper;
flowMonitor = flowHelper.InstallAll();
/* Start Applications */
sinkApp.Start (Seconds (0.0));
serverApp.Start (Seconds (1.0));
Simulator::Schedule (Seconds (1.1), &CalculateThroughput);
/* Enable Traces */
if (pcapTracing)
{
wifiPhy.SetPcapDataLinkType (WifiPhyHelper::DLT_IEEE802_11_RADIO);
wifiPhy.EnablePcap ("AccessPoint", apDevice);
wifiPhy.EnablePcap ("Station", staDevices);
}
/* Start Simulation */
Simulator::Stop (Seconds (simulationTime + 1));
Simulator::Run ();
flowMonitor->SerializeToXmlFile("1.xml", true, true);
double averageThroughput = ((sink->GetTotalRx () * 8) / (1e6 * simulationTime));
Simulator::Destroy ();
if (averageThroughput < 50)
{
NS_LOG_ERROR ("Obtained throughput is not in the expected boundaries!");
exit (1);
}
std::cout << "\nAverage throughput: " << averageThroughput << " Mbit/s" << std::endl;
return 0;
}
提前致谢:)
包含控制帧 (rts/cts/ack) 的 802.11 pcaps 是 link 层。
Flow Monitor 是为传输层设计的,所以你不能真正用它来获取数据。
您可以使用 wireshark/tshark 从 pcaps 中提取您想要的数据。或者可以尝试使用 pyshark 从 python 脚本中执行此操作。
在使用ns-3 为IEEE802.11 进行网络仿真时,生成了一个pcap 文件。我能够使用 WireShark 从该 pcap 文件中过滤有关 rts、cts 和 ack 的所有信息。但我需要使用流监视器模块(从生成的 XML 文件)提取相同的信息。但我找不到任何办法。是否可以使用流量监视器获取该信息?
我的代码类似于文件 ns-allinone-3.31/ns-3.31/examples/wireless/wifi-tcp.cc 但启用了 rts/cts 并添加了流量监视器。
#include "ns3/command-line.h"
#include "ns3/config.h"
#include "ns3/string.h"
#include "ns3/log.h"
#include "ns3/yans-wifi-helper.h"
#include "ns3/ssid.h"
#include "ns3/mobility-helper.h"
#include "ns3/on-off-helper.h"
#include "ns3/yans-wifi-channel.h"
#include "ns3/mobility-model.h"
#include "ns3/packet-sink.h"
#include "ns3/packet-sink-helper.h"
#include "ns3/tcp-westwood.h"
#include "ns3/internet-stack-helper.h"
#include "ns3/ipv4-address-helper.h"
#include "ns3/ipv4-global-routing-helper.h"
#include "ns3/flow-monitor.h"
#include "ns3/flow-monitor-module.h"
NS_LOG_COMPONENT_DEFINE ("wifi-tcp");
using namespace ns3;
Ptr<PacketSink> sink; /* Pointer to the packet sink application */
uint64_t lastTotalRx = 0; /* The value of the last total received bytes */
void
CalculateThroughput ()
{
Time now = Simulator::Now (); /* Return the simulator's virtual time. */
double cur = (sink->GetTotalRx () - lastTotalRx) * (double) 8 / 1e5; /* Convert Application RX Packets to MBits. */
std::cout << now.GetSeconds () << "s: \t" << cur << " Mbit/s" << std::endl;
lastTotalRx = sink->GetTotalRx ();
Simulator::Schedule (MilliSeconds (100), &CalculateThroughput);
}
int
main (int argc, char *argv[])
{
uint32_t payloadSize = 1472; /* Transport layer payload size in bytes. */
std::string dataRate = "100Mbps"; /* Application layer datarate. */
std::string tcpVariant = "TcpNewReno"; /* TCP variant type. */
std::string phyRate = "HtMcs7"; /* Physical layer bitrate. */
double simulationTime = 10; /* Simulation time in seconds. */
bool pcapTracing = true; /* PCAP Tracing is enabled or not. */
/* Command line argument parser setup. */
CommandLine cmd (__FILE__);
cmd.AddValue ("payloadSize", "Payload size in bytes", payloadSize);
cmd.AddValue ("dataRate", "Application data ate", dataRate);
cmd.AddValue ("tcpVariant", "Transport protocol to use: TcpNewReno, "
"TcpHybla, TcpHighSpeed, TcpHtcp, TcpVegas, TcpScalable, TcpVeno, "
"TcpBic, TcpYeah, TcpIllinois, TcpWestwood, TcpWestwoodPlus, TcpLedbat ", tcpVariant);
cmd.AddValue ("phyRate", "Physical layer bitrate", phyRate);
cmd.AddValue ("simulationTime", "Simulation time in seconds", simulationTime);
cmd.AddValue ("pcap", "Enable/disable PCAP Tracing", pcapTracing);
cmd.Parse (argc, argv);
tcpVariant = std::string ("ns3::") + tcpVariant;
// Select TCP variant
if (tcpVariant.compare ("ns3::TcpWestwoodPlus") == 0)
{
// TcpWestwoodPlus is not an actual TypeId name; we need TcpWestwood here
Config::SetDefault ("ns3::TcpL4Protocol::SocketType", TypeIdValue (TcpWestwood::GetTypeId ()));
// the default protocol type in ns3::TcpWestwood is WESTWOOD
Config::SetDefault ("ns3::TcpWestwood::ProtocolType", EnumValue (TcpWestwood::WESTWOODPLUS));
}
else
{
TypeId tcpTid;
NS_ABORT_MSG_UNLESS (TypeId::LookupByNameFailSafe (tcpVariant, &tcpTid), "TypeId " << tcpVariant << " not found");
Config::SetDefault ("ns3::TcpL4Protocol::SocketType", TypeIdValue (TypeId::LookupByName (tcpVariant)));
}
/* Configure TCP Options */
std::string RtsCtsThreshold="256";
std::string FragmentationThreshold="1000";
Config::SetDefault("ns3::WifiRemoteStationManager::RtsCtsThreshold",StringValue(RtsCtsThreshold));
Config::SetDefault("ns3::WifiRemoteStationManager::FragmentationThreshold",StringValue(FragmentationThreshold));
Config::SetDefault ("ns3::TcpSocket::SegmentSize", UintegerValue (payloadSize));
WifiMacHelper wifiMac;
WifiHelper wifiHelper;
wifiHelper.SetStandard (WIFI_PHY_STANDARD_80211n_5GHZ);
/* Set up Legacy Channel */
YansWifiChannelHelper wifiChannel;
wifiChannel.SetPropagationDelay ("ns3::ConstantSpeedPropagationDelayModel");
wifiChannel.AddPropagationLoss ("ns3::FriisPropagationLossModel", "Frequency", DoubleValue (5e9));
/* Setup Physical Layer */
YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default ();
wifiPhy.SetChannel (wifiChannel.Create ());
wifiPhy.SetErrorRateModel ("ns3::YansErrorRateModel");
wifiHelper.SetRemoteStationManager ("ns3::ConstantRateWifiManager",
"DataMode", StringValue (phyRate),
"ControlMode", StringValue ("HtMcs0"));
NodeContainer networkNodes;
networkNodes.Create (2);
Ptr<Node> apWifiNode = networkNodes.Get (0);
Ptr<Node> staWifiNode = networkNodes.Get (1);
/* Configure AP */
Ssid ssid = Ssid ("network");
wifiMac.SetType ("ns3::ApWifiMac",
"Ssid", SsidValue (ssid));
NetDeviceContainer apDevice;
apDevice = wifiHelper.Install (wifiPhy, wifiMac, apWifiNode);
/* Configure STA */
wifiMac.SetType ("ns3::StaWifiMac",
"Ssid", SsidValue (ssid));
NetDeviceContainer staDevices;
staDevices = wifiHelper.Install (wifiPhy, wifiMac, staWifiNode);
/* Mobility model */
MobilityHelper mobility;
Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator> ();
positionAlloc->Add (Vector (0.0, 0.0, 0.0));
positionAlloc->Add (Vector (1.0, 1.0, 0.0));
mobility.SetPositionAllocator (positionAlloc);
mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");
mobility.Install (apWifiNode);
mobility.Install (staWifiNode);
/* Internet stack */
InternetStackHelper stack;
stack.Install (networkNodes);
Ipv4AddressHelper address;
address.SetBase ("10.0.0.0", "255.255.255.0");
Ipv4InterfaceContainer apInterface;
apInterface = address.Assign (apDevice);
Ipv4InterfaceContainer staInterface;
staInterface = address.Assign (staDevices);
/* Populate routing table */
Ipv4GlobalRoutingHelper::PopulateRoutingTables ();
/* Install TCP Receiver on the access point */
PacketSinkHelper sinkHelper ("ns3::TcpSocketFactory", InetSocketAddress (Ipv4Address::GetAny (), 9));
ApplicationContainer sinkApp = sinkHelper.Install (apWifiNode);
sink = StaticCast<PacketSink> (sinkApp.Get (0));
/* Install TCP/UDP Transmitter on the station */
OnOffHelper server ("ns3::TcpSocketFactory", (InetSocketAddress (apInterface.GetAddress (0), 9)));
server.SetAttribute ("PacketSize", UintegerValue (payloadSize));
server.SetAttribute ("OnTime", StringValue ("ns3::ConstantRandomVariable[Constant=1]"));
server.SetAttribute ("OffTime", StringValue ("ns3::ConstantRandomVariable[Constant=0]"));
server.SetAttribute ("DataRate", DataRateValue (DataRate (dataRate)));
ApplicationContainer serverApp = server.Install (staWifiNode);
// Flow monitor
Ptr<FlowMonitor> flowMonitor;
FlowMonitorHelper flowHelper;
flowMonitor = flowHelper.InstallAll();
/* Start Applications */
sinkApp.Start (Seconds (0.0));
serverApp.Start (Seconds (1.0));
Simulator::Schedule (Seconds (1.1), &CalculateThroughput);
/* Enable Traces */
if (pcapTracing)
{
wifiPhy.SetPcapDataLinkType (WifiPhyHelper::DLT_IEEE802_11_RADIO);
wifiPhy.EnablePcap ("AccessPoint", apDevice);
wifiPhy.EnablePcap ("Station", staDevices);
}
/* Start Simulation */
Simulator::Stop (Seconds (simulationTime + 1));
Simulator::Run ();
flowMonitor->SerializeToXmlFile("1.xml", true, true);
double averageThroughput = ((sink->GetTotalRx () * 8) / (1e6 * simulationTime));
Simulator::Destroy ();
if (averageThroughput < 50)
{
NS_LOG_ERROR ("Obtained throughput is not in the expected boundaries!");
exit (1);
}
std::cout << "\nAverage throughput: " << averageThroughput << " Mbit/s" << std::endl;
return 0;
}
提前致谢:)
包含控制帧 (rts/cts/ack) 的 802.11 pcaps 是 link 层。 Flow Monitor 是为传输层设计的,所以你不能真正用它来获取数据。
您可以使用 wireshark/tshark 从 pcaps 中提取您想要的数据。或者可以尝试使用 pyshark 从 python 脚本中执行此操作。