从文本文件中提取与输入词最相似的前 N ​​个词

Extract top N words that are most similar to an input word from a text file

我有一个文本文件,其中包含我使用 BeautifulSoup 提取的网页内容。我需要根据给定的单词从文本文件中找到 N 个相似的单词。过程如下:

  1. 从中提取文本的网站:https://en.wikipedia.org/wiki/Football
  2. 提取的文本保存到文本文件中。
  3. 用户输入一个词,例如:“目标”,我必须显示文本文件中最相似的前 N ​​个词。

我只从事计算机视觉工作,对 NLP 完全陌生。我目前停留在第 3 步。我已经尝试过 Spacy 和 Gensim,但我的方法根本没有效率。我目前这样做:

for word in ['goal', 'soccer']:
    # 1. compute similarity using spacy for each word in the text file with the given word.
    # 2. sort them based on the scores and choose the top N-words.

是否有任何其他方法或简单的解决方案来解决这个问题?任何帮助表示赞赏。谢谢!

你可以使用 spacy similarity 方法,它会为你计算标记之间的余弦相似度。为了使用矢量,加载一个带有矢量的模型:

import spacy
nlp = spacy.load("en_core_web_md")

text = "I have a text file that contains the content of a web page that I have extracted using BeautifulSoup. I need to find N similar words from the text file based on a given word. The process is as follows"
doc = nlp(text)
words = ['goal', 'soccer']

# compute similarity    
similarities = {}   
for word in words:
    tok = nlp(word)
    similarities[tok.text] ={}
    for tok_ in doc:
        similarities[tok.text].update({tok_.text:tok.similarity(tok_)})

# sort
top10 = lambda x: {k: v for k, v in sorted(similarities[x].items(), key=lambda item: item[1], reverse=True)[:10]}

# desired output
top10("goal")
{'need': 0.41729581641359625,
 'that': 0.4156277030017712,
 'to': 0.40102258054859163,
 'is': 0.3742535591719576,
 'the': 0.3735002888862756,
 'The': 0.3735002888862756,
 'given': 0.3595024941701789,
 'process': 0.35218102758578645,
 'have': 0.34597281472837316,
 'as': 0.34433650293640194}

注意,(1) 如果您对 gensim、and/or 感到满意,(2) 有一个 word2vec 模型在您的文本上进行训练,您可以直接执行以下操作:

word2Vec.most_similar(positive=['goal'], topn=10)