无法将动态 类 与 concurrent.futures.ProcessPoolExecutor 一起使用

Unable to use dynamic classes with concurrent.futures.ProcessPoolExecutor

在下面的代码中,我使用 generate_object 方法在 _py 属性中动态创建了 class 的对象。

如果我不使用并发方法,代码可以完美运行。但是,如果我使用 concurrent.futures 的并发,我不会得到想要的结果,因为出现错误提示(除其他外):

_pickle.PicklingError: Can't pickle <class '__main__.Script_0_1'>: attribute lookup Script_0_1 on __main__ failed

在谷歌搜索这个错误后,我了解到在 ProcessPoolExecutor.map() 中只有可腌制的对象将作为参数传递,所以我决定看看如何将我的动态 class 变成可腌制的。

问题是该问题的所有其他解决方案都以不同的方式创建动态对象(与我在 _string_to_object() 中使用的不同)。示例: and 2

我非常想保持动态对象的创建方式,因为我的很多实际代码都是基于它的,因此我正在寻找一个与下面这个玩具代码一起工作的并发解决方案。

代码

import random
import codecs
import re
from concurrent.futures import ProcessPoolExecutor
import multiprocessing

class A:
    def __init__(self):
        self._py = r'''
class Script_{0}_{1}:
\tdef print_numbers(self):
\t\tprint('Numbers = ', {0}, 'and', {1})
'''
    
    def generate_text(self, name_1, name_2):
        py = self._py.format(name_1, name_2)
        py = codecs.decode(py, 'unicode_escape')
        return py

    def generate_object(self, number_1, number_2):
        """ Generate an object of the class inside the string self._py """

        return self._string_to_object(self.generate_text(number_1, number_2))

    def _string_to_object(self, str_class, *args, **kwargs):
        """ Transform a program written inside str_class to an object. """

        exec(str_class)
        class_name = re.search("class (.*):", str_class).group(1).partition("(")[0]
        return locals()[class_name](*args, **kwargs)

from functools import partial

print('Single usage')
a = A()
script = a.generate_object(1, 2)
script.print_numbers()

print('Multiprocessing usage')
n_cores = 3
n_calls = 3

def concurrent_function(args):
    first_A = args[0]
    second_A = args[1]
    first_A.print_numbers()
    second_A.print_numbers()

with ProcessPoolExecutor(max_workers=n_cores) as executor:
    args = ( (A().generate_object(i, i+1), A().generate_object(i+1, i+2)) for i in range(n_calls))
    results = executor.map(concurrent_function, args)

我想不出一种方法来严格按照您当前的方案在全局名称 space 中创建 Script classes。然而:

既然每次调用方法 generate_object 都会在本地名称 space 中创建一个新的 class 并实例化该 class 的对象,为什么不推迟在进程池中完成它的工作?这还有一个额外的好处,即可以并行执行此 class-creation 处理,并且不需要酸洗。我们现在将两个整数参数 number_1number_2:

传递给 concurrent_function
import random
import codecs
import re
from concurrent.futures import ProcessPoolExecutor


class A:
    def __init__(self):
        self._py = r'''
class Script_{0}_{1}:
\tdef print_numbers(self):
\t\tprint('Numbers = ', {0}, 'and', {1})
'''

    def generate_text(self, name_1, name_2):
        py = self._py.format(name_1, name_2)
        py = codecs.decode(py, 'unicode_escape')
        return py

    def generate_object(self, number_1, number_2):
        """ Generate an object of the class inside the string self._py """

        return self._string_to_object(self.generate_text(number_1, number_2))

    def _string_to_object(self, str_class, *args, **kwargs):
        """ Transform a program written inside str_class to an object. """

        exec(str_class)
        class_name = re.search("class (.*):", str_class).group(1).partition("(")[0]
        return locals()[class_name](*args, **kwargs)

"""
from functools import partial

print('Single usage')
a = A()
script = a.generate_object(1, 2)
script.print_numbers()
"""


def concurrent_function(args):
    for arg in args:
        obj = A().generate_object(arg[0], arg[1])
        obj.print_numbers()

def main():
    print('Multiprocessing usage')
    n_cores = 3
    n_calls = 3

    with ProcessPoolExecutor(max_workers=n_cores) as executor:
        args = ( ((i, i+1), (i+1, i+2)) for i in range(n_calls))
        # wait for completion of all tasks:
        results = list(executor.map(concurrent_function, args))

if __name__ == '__main__':
    main()

打印:

Multiprocessing usage
Numbers =  0 and 1
Numbers =  1 and 2
Numbers =  1 and 2
Numbers =  2 and 3
Numbers =  2 and 3
Numbers =  3 and 4

更高效的方法

不需要使用exec。而是使用闭包:

from concurrent.futures import ProcessPoolExecutor

def make_print_function(number_1, number_2):
    def print_numbers():
        print(f'Numbers = {number_1} and {number_2}')

    return print_numbers



def concurrent_function(args):
    for arg in args:
        fn = make_print_function(arg[0], arg[1])
        fn()


def main():
    print('Multiprocessing usage')
    n_cores = 3
    n_calls = 3

    with ProcessPoolExecutor(max_workers=n_cores) as executor:
        args = ( ((i, i+1), (i+1, i+2)) for i in range(n_calls))
        # wait for completion of all tasks:
        results = list(executor.map(concurrent_function, args))

if __name__ == '__main__':
    main()

打印:

Multiprocessing usage
Numbers = 0 and 1
Numbers = 1 and 2
Numbers = 1 and 2
Numbers = 2 and 3
Numbers = 2 and 3
Numbers = 3 and 4

使用对象缓存避免不必要地创建新对象

obj_cache = {} # each process will have its own

def concurrent_function(args):
    for arg in args:
        # was an object created with this set of arguments: (arg[0], arg[1])?
        obj = obj_cache.get(arg)
        if obj is None: # must create new object
            obj = A().generate_object(arg[0], arg[1])
            obj_cache[arg] = obj # save object for possible future use
        obj.print_numbers()

可能我找到了一种无需 exec() 函数即可执行此操作的方法。实施(带评论)如下。

import codecs
from concurrent.futures import ProcessPoolExecutor

class A:
    def __init__(self):
        self.py = r'''
class Script_{0}_{1}:
\tdef print_numbers(self):
\t\tprint('Numbers = ', {0}, 'and', {1})
'''
    def generate_text(self, number_1, number_2):
        py = self.py.format(number_1, number_2)
        py = codecs.decode(py, 'unicode_escape')
        return py

    def generate_object(self, number_1, number_2):
        class_code = self.generate_text(number_1, number_2)
        # Create file in disk
        with open("Script_" + str(number_1) + "_" + str(number_2) + ".py", "w") as file:
            file.write(class_code)
        # Now import it and the class will now be (correctly) seen in __main__
        package = "Script_" + str(number_1) + "_" + str(number_2)
        class_name = "Script_" + str(number_1) + "_" + str(number_2)
        # This is the programmatically version of 
        # from <package> import <class_name>
        class_name = getattr(__import__(package, fromlist=[class_name]), class_name)
        return class_name()

def concurrent_function(args):
    first_A = args[0]
    second_A = args[1]
    first_A.print_numbers()
    second_A.print_numbers()

def main():
    print('Multiprocessing usage')
    n_cores = 3
    n_calls = 2
    
    with ProcessPoolExecutor(max_workers=n_cores) as executor:
        args = ( (A().generate_object(i, i+1), A().generate_object(i+2, i+3)) for i in range(n_calls))
        results = executor.map(concurrent_function, args)

if __name__ == '__main__':
    main()

基本上我所做的不是动态分配 class,而是将其写入文件。我这样做是因为我遇到的问题的根源是 pickle 在查看全局范围时无法正确定位嵌套的 class 。现在我以编程方式导入 class(将其保存到文件后)。

当然,这个方案也有处理文件的瓶颈,成本也很高。我没有测量处理文件或 exec 是否更快,但在我的 real-world 情况下,我只需要合成 class 的一个对象(而不是像玩具中那样每次并行调用一个对象提供的代码),因此文件选项最适合我。

还有一个问题:在使用n_calls = 15(例如)并执行多次后,有时似乎无法导入模块(刚刚创建的文件)。我试图在以编程方式导入它之前放置一个 sleep() 但它没有帮助。使用少量调用时似乎不会发生此问题,而且似乎也是随机发生的。部分错误堆栈的示例如下所示:

Traceback (most recent call last):
  File "main.py", line 45, in <module>
    main()
  File "main.py", line 42, in main
    results = executor.map(concurrent_function, args)
  File "/usr/lib/python3.8/concurrent/futures/process.py", line 674, in map
    results = super().map(partial(_process_chunk, fn),
  File "/usr/lib/python3.8/concurrent/futures/_base.py", line 600, in map
    fs = [self.submit(fn, *args) for args in zip(*iterables)]
  File "/usr/lib/python3.8/concurrent/futures/_base.py", line 600, in <listcomp>
    fs = [self.submit(fn, *args) for args in zip(*iterables)]
  File "/usr/lib/python3.8/concurrent/futures/process.py", line 184, in _get_chunks
    chunk = tuple(itertools.islice(it, chunksize))
  File "main.py", line 41, in <genexpr>
    args = ( (A().generate_object(i, i+1), A().generate_object(i+2, i+3)) for i in range(n_calls))
  File "main.py", line 26, in generate_object
    class_name = getattr(__import__(package, fromlist=[class_name]), class_name)
ModuleNotFoundError: No module named 'Script_13_14'