调整大小 quad_tree
Resize quad_tree
将矩阵的大小更改为 2m × 2m 。这是这样做的
如下。如果m≥n,用2m-n×2m-n矩阵替换原图的每个像素点
所有值都等于原始像素。如果m < n,将矩阵分成2m × 2m
子矩阵,每个大小为 2n-m × 2n-m ,并用一个像素替换每个子矩阵
值在子矩阵中出现的频率更高。如果相等,选1。
How to resize region quadtree of height n with height m. QUADTREE is defined as follows:
An image is considered to be a 2n × 2n matrix, each of whose entries is 0 (white) or 1 (black). Each entry is called a pixel. Instead of storing the whole matrix, different data structures are used to reduce the size. The quad-tree is one such.
A quad-tree is a rooted tree in which every node has either 0 or 4 children. Every node in the tree corresponds to some sub-matrix of the whole matrix, with size 2i × 2i for some 0 ≤ i ≤ n. The root node is the entire matrix. If all entries in a sub-matrix corresponding to a node are equal, the node is a leaf node, and it stores the value of the pixels in the sub-matrix. If there are distinct entries in the sub-matrix, divide it into 4 sub-matrices of size 2i-1 × 2i-1 , called top-left, top-right, bottom-right, bottom-left, and recursively construct the sub-trees corresponding to the 4 sub-matrices.
我实现了两个解决方案,第一个是四叉树的情况,第二个是二维向量(数组)的情况(我的第二个解决方案实际上是我的第一个,我错误地实现了它,忘了注意到我们需要特别的四叉树结构,但是如果它对某人有帮助,我仍然会留下第二个。
第一个解决方案 使用四叉树结构。
四叉树实现为四叉树模板结构,可以存储任何数据类型T
,默认情况下它存储二进制图像数据为size_t
类型(0/1,black/white) .有函数 CreateQT
用于创建和填充给定高度的四叉树,TraverseQT
一个遍历所有树节点并将给定回调应用于每个叶节点的函数,ResizeQT
实际解决给定任务- 将四叉树的大小从当前高度 n
调整为新高度 m
,DumpQT
函数将四叉树转储到字符串,以便将其输出到控制台。
main()
函数只是通过 rand() % 2
调用用随机二进制数据填充它来创建高度为 n
和 CreateQT
的输入树,然后它输出原始图像到控制台通过 DumpQT
调用,然后通过调用 ResizeQT
从高度 n
调整到高度 m
,并使用 DumpQT
.[=43= 将最终调整大小的图像输出到控制台]
#include <cstdlib>
#include <vector>
#include <utility>
#include <iostream>
#include <map>
#include <algorithm>
#include <array>
#include <memory>
#include <string>
#include <functional>
using namespace std;
template <typename T>
struct QuadTree {
typedef T data_t;
size_t height() const {
return st[0] ? st[0]->height() + 1 : 0;
}
T data = T();
// Sub-trees, in order Top-Left, Top-Right, Bottom-Left, Bottom-Right.
array< shared_ptr<QuadTree>, 4 > st = {};
};
template <typename T>
static shared_ptr< QuadTree<T> > CreateQT(size_t const height, function<T()> const & filler) {
shared_ptr< QuadTree<T> > r(new QuadTree<T>());
if (height <= 0)
r->data = filler();
else
for (size_t i = 0; i < r->st.size(); ++i)
r->st[i] = CreateQT(height - 1, filler);
return r;
}
template <typename T>
static void TraverseQT(QuadTree<T> const & qt, function<void(T const &)> const & visitor) {
if (qt.height() <= 0)
visitor(qt.data);
else
for (size_t i = 0; i < qt.st.size(); ++i)
TraverseQT<T>(*qt.st[i], visitor);
}
template <typename T>
static void ResizeQT(QuadTree<T> & qt, size_t const m) {
size_t const n = qt.height();
if (n == m)
return;
if (n > 0 && m > 0) {
for (size_t i = 0; i < qt.st.size(); ++i)
ResizeQT(*qt.st[i], m - 1);
} else if (m > 0) {
qt.st = CreateQT<T>(m, [&](){ return qt.data; })->st;
qt.data = T();
} else if (n > 0) {
map<T, size_t> cnt;
TraverseQT<T>(qt, [&](T const & v){ ++cnt[v]; });
// Find max
pair<T, size_t> maxv = {{}, 0};
for (auto const & p: cnt)
if (p.second > maxv.second)
maxv = p;
qt.data = maxv.first;
for (size_t i = 0; i < qt.st.size(); ++i)
qt.st[i].reset();
}
return;
}
string VecToStr(vector<string> const & a) {
string r;
for (size_t i = 0; i < a.size(); ++i) {
r += a[i];
if (i < a.size() - 1)
r += "\n";
}
return r;
}
template <typename T>
static vector<string> DumpQT(QuadTree<T> const & qt) {
if (qt.height() <= 0)
return {to_string(qt.data)};
auto JoinH = [](vector<string> const & a, vector<string> const & b) {
vector<string> r;
for (size_t i = 0; i < min(a.size(), b.size()); ++i)
r.push_back(a[i] + " " + b[i]);
return r;
};
auto JoinV = [](vector<string> const & a, vector<string> const & b) {
vector<string> r = a;
r.insert(r.end(), b.begin(), b.end());
return r;
};
return JoinV(
JoinH(DumpQT(*qt.st[0]), DumpQT(*qt.st[1])),
JoinH(DumpQT(*qt.st[2]), DumpQT(*qt.st[3]))
);
}
int main() {
try {
vector< pair<size_t, size_t> > const nm = {{2, 3}, {3, 3}, {4, 3}};
srand(0);
typedef QuadTree<size_t> ImgQT;
// Iterate through all "nm" tests
for (size_t t = 0; t < nm.size(); ++t) {
size_t n = nm[t].first, m = nm[t].second;
cout << "n = " << n << ", m = " << m << endl;
// Create/Fill input img of size 2^n with random values.
ImgQT img = *CreateQT<ImgQT::data_t>(n, []()->size_t{ return rand() % 2; });
cout << "Original:" << endl << VecToStr(DumpQT(img)) << endl;
// Solve task, resize to 2^m.
ResizeQT(img, m);
cout << "Resized:" << endl << VecToStr(DumpQT(img)) << endl;
}
return 0;
} catch (exception const & ex) {
cout << "Exception: " << ex.what() << endl;
return -1;
} catch (...) {
cout << "Unknown Exception!" << endl;
return -1;
}
}
控制台输出:
n = 2, m = 3
Original:
0 1 1 1
0 1 1 1
0 0 0 1
1 0 1 1
Resized:
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1
1 1 0 0 1 1 1 1
1 1 0 0 1 1 1 1
n = 3, m = 3
Original:
1 1 0 1 0 1 1 1
1 0 1 0 1 1 0 1
1 1 1 0 1 0 1 0
1 0 0 0 1 1 0 1
0 0 1 1 0 0 0 0
1 0 0 1 1 0 1 1
1 0 0 0 1 1 1 1
1 0 0 0 0 0 1 0
Resized:
1 1 0 1 0 1 1 1
1 0 1 0 1 1 0 1
1 1 1 0 1 0 1 0
1 0 0 0 1 1 0 1
0 0 1 1 0 0 0 0
1 0 0 1 1 0 1 1
1 0 0 0 1 1 1 1
1 0 0 0 0 0 1 0
n = 4, m = 3
Original:
1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0
1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 1
1 1 1 1 0 1 1 0 1 1 1 1 0 0 0 1
1 1 0 0 1 1 0 0 0 1 0 1 1 1 0 1
1 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1
0 1 0 0 1 0 0 1 0 1 1 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 1
1 1 1 1 0 1 1 1 0 0 1 1 0 1 1 1
0 1 0 1 1 0 1 1 1 1 0 0 0 1 1 0
1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1
0 0 1 1 0 0 0 1 1 1 0 0 1 0 0 0
1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 1 0 1 1 0 0 1 1 1 1 1
1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1
0 0 0 1 1 1 1 0 0 1 0 1 0 0 0 1
Resized:
0 0 0 0 0 0 0 0
1 0 1 0 1 1 0 1
1 0 1 0 0 1 0 1
0 0 0 0 0 1 0 0
1 1 0 1 0 0 0 1
0 1 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 1
第二种解决方案 使用二维向量。
在代码的开头,使用您想要的 n
和 m
值向 nm
数组添加额外的测试。输入图像 pre-filled 具有小的随机整数值,如果需要,您可以更改它以读取一些输入。
每个图像像素表示为一个 fixed-size 数组,其大小等于通道数(例如,1 代表灰色,3 代表 RGB)。在下一个代码中,为简单起见,每个像素都有 1 个通道,只有一个整数。通道数由 nchans
常量配置,将 nchans
更改为例如3 用于测试 RGB 图像。
每个像素都填充有随机整数,随机整数的范围由代码中的下一个表达式控制rand() % (t <= 1 ? 10 : 3)
,修改模数后的值%
以更改可能值的范围大小。
#include <cstdlib>
#include <vector>
#include <utility>
#include <iostream>
#include <map>
#include <algorithm>
#include <array>
using namespace std;
int main() {
try {
vector< pair<size_t, size_t> > const nm = {{2, 3}, {3, 3}, {4, 3}};
size_t const nchans = 1; // Number of channels (colors), e.g. 1 for Gray and 3 for RGB.
typedef array<size_t, nchans> PixelT;
srand(0);
// Iterate through all "nm" tests
for (size_t t = 0; t < nm.size(); ++t) {
vector< vector<PixelT> > img;
size_t n = nm[t].first, m = nm[t].second;
cout << "n = " << n << ", m = " << m << endl;
cout << "Original:" << endl;
// Create/Fill input img of size 2^n with random values.
// (1 << n) is same as 2^n (power of 2).
for (size_t i = 0; i < (1 << n); ++i) {
img.resize(img.size() + 1);
for (size_t j = 0; j < (1 << n); ++j) {
PixelT p = {};
for (size_t k = 0; k < p.size(); ++k) {
p[k] = rand() % (t <= 1 ? 10 : 3);
cout << p[k];
if (k < p.size() - 1)
cout << ",";
}
cout << " ";
img[i].push_back(p);
}
cout << endl;
}
// Solve task, resize to 2^m.
vector< vector<PixelT> > oimg;
if (n <= m) {
for (size_t i = 0; i < (1 << m); ++i) {
oimg.resize(oimg.size() + 1);
for (size_t j = 0; j < (1 << m); ++j) {
oimg[i].push_back(
img[i >> (m - n)][j >> (m - n)]
);
}
}
} else {
for (size_t i = 0; i < (1 << m); ++i) {
oimg.resize(oimg.size() + 1);
for (size_t j = 0; j < (1 << m); ++j) {
// Count number of occurances
map<PixelT, size_t> cnt;
for (size_t k = (i << (n - m)); k < ((i << (n - m)) + (1 << (n - m))); ++k)
for (size_t l = (j << (n - m)); l < ((j << (n - m)) + (1 << (n - m))); ++l)
++cnt[img[k][l]];
// Find max
pair<PixelT, size_t> maxv = {{}, 0};
for (auto const & p: cnt)
if (p.second > maxv.second)
maxv = p;
oimg[i].push_back(maxv.first);
}
}
}
// Output results
cout << "Resized:" << endl;
for (size_t i = 0; i < oimg.size(); ++i) {
for (size_t j = 0; j < oimg[i].size(); ++j) {
auto const & p = oimg[i][j];
for (size_t k = 0; k < p.size(); ++k) {
cout << p[k];
if (k < p.size() - 1)
cout << ",";
}
cout << " ";
}
cout << endl;
}
}
return 0;
} catch (exception const & ex) {
cout << "Exception: " << ex.what() << endl;
return -1;
} catch (...) {
cout << "Unknown Exception!" << endl;
return -1;
}
}
灰度图像 (nchans = 1
) 的示例输出:
n = 2, m = 3
Original:
8 9 8 7
5 7 5 5
0 2 3 0
2 1 7 1
Resized:
8 8 9 9 8 8 7 7
8 8 9 9 8 8 7 7
5 5 7 7 5 5 5 5
5 5 7 7 5 5 5 5
0 0 2 2 3 3 0 0
0 0 2 2 3 3 0 0
2 2 1 1 7 7 1 1
2 2 1 1 7 7 1 1
n = 3, m = 3
Original:
5 5 7 0 6 1 5 6
7 3 1 0 5 8 6 0
0 7 7 7 1 7 6 7
3 8 3 7 7 4 2 1
8 6 9 4 9 5 8 9
9 6 1 4 4 6 8 2
2 4 7 6 8 2 7 3
3 3 0 2 7 5 1 4
Resized:
5 5 7 0 6 1 5 6
7 3 1 0 5 8 6 0
0 7 7 7 1 7 6 7
3 8 3 7 7 4 2 1
8 6 9 4 9 5 8 9
9 6 1 4 4 6 8 2
2 4 7 6 8 2 7 3
3 3 0 2 7 5 1 4
n = 4, m = 3
Original:
2 2 2 2 2 1 2 2 2 0 1 0 0 0 0 2
0 0 2 2 2 2 1 2 1 2 1 2 0 1 1 2
1 0 2 0 1 0 2 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 1 1 1 1 1 1 0 2 0 1
2 1 0 0 2 2 1 1 0 1 1 2 1 1 2 0
1 1 0 0 1 1 1 2 2 1 2 2 0 2 1 2
1 0 0 0 1 2 1 0 2 2 0 0 0 2 1 2
2 1 0 0 1 2 1 0 1 0 2 2 2 0 2 2
0 1 1 2 2 1 0 2 1 0 1 2 0 2 2 1
0 0 0 2 0 1 2 2 2 1 1 2 1 1 1 2
1 1 1 0 2 2 2 1 1 2 1 0 0 0 0 2
1 0 0 0 2 2 1 1 2 2 0 0 1 1 1 2
1 2 2 1 1 1 2 2 2 2 0 0 2 2 2 2
1 2 1 2 2 2 2 2 0 0 2 2 0 0 0 2
0 0 0 0 2 0 0 1 1 2 2 0 1 1 0 0
0 0 1 1 0 0 1 1 0 0 1 2 1 2 1 0
Resized:
0 2 2 2 2 1 0 2
0 0 0 1 1 1 1 1
1 0 1 1 1 2 1 2
1 0 1 0 2 0 0 2
0 2 1 2 1 1 1 1
1 0 2 1 2 0 0 2
1 1 1 2 0 0 0 2
0 0 0 1 0 2 1 0
RGB 图像 (nchans = 3
) 的示例输出:
n = 2, m = 3
Original:
8,9,8 7,5,7 5,5,0 2,3,0
2,1,7 1,5,5 7,0,6 1,5,6
7,3,1 0,5,8 6,0,0 7,7,7
1,7,6 7,3,8 3,7,7 4,2,1
Resized:
8,9,8 8,9,8 7,5,7 7,5,7 5,5,0 5,5,0 2,3,0 2,3,0
8,9,8 8,9,8 7,5,7 7,5,7 5,5,0 5,5,0 2,3,0 2,3,0
2,1,7 2,1,7 1,5,5 1,5,5 7,0,6 7,0,6 1,5,6 1,5,6
2,1,7 2,1,7 1,5,5 1,5,5 7,0,6 7,0,6 1,5,6 1,5,6
7,3,1 7,3,1 0,5,8 0,5,8 6,0,0 6,0,0 7,7,7 7,7,7
7,3,1 7,3,1 0,5,8 0,5,8 6,0,0 6,0,0 7,7,7 7,7,7
1,7,6 1,7,6 7,3,8 7,3,8 3,7,7 3,7,7 4,2,1 4,2,1
1,7,6 1,7,6 7,3,8 7,3,8 3,7,7 3,7,7 4,2,1 4,2,1
n = 3, m = 3
Original:
8,6,9 4,9,5 8,9,9 6,1,4 4,6,8 2,2,4 7,6,8 2,7,3
3,3,0 2,7,5 1,4,3 2,9,4 9,6,4 7,3,5 3,3,0 4,3,1
4,5,9 0,7,6 9,6,9 7,0,3 2,4,1 2,5,1 9,7,0 0,4,8
4,7,6 1,8,2 0,4,1 5,7,0 4,2,6 7,3,4 8,4,4 1,7,6
6,3,0 2,7,0 7,8,3 3,9,3 1,4,1 3,2,1 4,0,9 4,1,2
0,2,8 6,1,5 6,9,8 5,7,0 4,3,5 1,4,7 6,6,1 7,4,1
3,9,4 6,4,9 5,7,0 2,5,0 6,0,2 3,5,7 8,7,5 1,0,7
3,1,6 2,7,2 1,3,2 5,5,6 5,9,7 3,3,7 2,2,1 4,6,5
Resized:
8,6,9 4,9,5 8,9,9 6,1,4 4,6,8 2,2,4 7,6,8 2,7,3
3,3,0 2,7,5 1,4,3 2,9,4 9,6,4 7,3,5 3,3,0 4,3,1
4,5,9 0,7,6 9,6,9 7,0,3 2,4,1 2,5,1 9,7,0 0,4,8
4,7,6 1,8,2 0,4,1 5,7,0 4,2,6 7,3,4 8,4,4 1,7,6
6,3,0 2,7,0 7,8,3 3,9,3 1,4,1 3,2,1 4,0,9 4,1,2
0,2,8 6,1,5 6,9,8 5,7,0 4,3,5 1,4,7 6,6,1 7,4,1
3,9,4 6,4,9 5,7,0 2,5,0 6,0,2 3,5,7 8,7,5 1,0,7
3,1,6 2,7,2 1,3,2 5,5,6 5,9,7 3,3,7 2,2,1 4,6,5
n = 4, m = 3
Original:
1,1,0 1,0,0 1,0,1 1,0,0 0,1,0 1,0,1 0,1,0 0,0,1 0,1,1 1,1,0 1,0,0 0,1,1 1,1,0 0,1,0 1,1,0 0,0,0
0,1,0 1,1,1 1,0,1 0,1,0 0,1,0 0,0,0 1,0,0 0,0,1 1,1,0 1,0,1 0,1,0 0,1,1 0,0,1 1,1,0 0,0,1 1,0,1
0,0,1 1,0,1 0,1,0 1,0,0 0,1,0 0,1,0 1,0,1 1,1,0 0,0,1 1,0,0 0,1,0 0,1,1 1,0,1 1,0,0 0,1,0 1,1,1
1,1,1 1,1,1 1,1,1 0,0,1 1,1,1 0,0,0 1,0,0 0,0,0 1,1,1 1,1,0 1,1,0 1,1,0 0,1,0 1,0,0 0,1,1 0,1,0
0,1,1 0,0,0 0,1,1 0,0,1 1,1,0 1,0,1 0,1,0 1,0,1 1,1,0 0,0,1 1,1,0 1,0,0 1,0,0 0,0,1 1,1,1 1,0,0
1,1,1 0,1,1 1,1,0 0,0,1 1,0,1 1,0,0 0,1,1 0,1,1 0,1,1 1,1,1 1,1,1 1,1,1 1,1,0 0,1,1 0,0,0 0,1,0
0,1,0 1,0,0 1,1,1 0,1,1 0,0,0 0,0,0 1,0,0 1,0,0 1,0,1 1,0,1 0,0,1 1,0,0 0,1,1 1,1,0 0,1,0 1,1,1
0,1,0 1,0,0 1,0,0 0,1,0 1,1,1 1,0,0 1,1,0 0,0,1 1,1,1 1,1,0 1,1,0 0,1,0 0,1,0 1,1,1 1,1,1 1,0,1
1,0,0 0,0,1 1,0,1 0,1,1 1,1,1 1,0,1 0,1,0 0,1,1 0,1,0 0,1,0 1,1,1 1,0,1 1,0,1 1,0,0 1,1,0 0,1,1
0,1,0 1,0,1 1,1,0 0,1,1 0,0,1 0,0,1 0,0,1 1,1,1 1,1,1 1,1,0 1,0,0 0,1,1 0,0,0 0,1,1 1,0,0 1,0,1
0,1,1 0,1,0 0,0,0 1,0,1 1,0,1 1,0,0 1,0,0 0,1,1 1,1,1 1,0,0 1,0,1 0,0,0 1,0,0 0,1,1 0,1,0 0,1,0
0,1,0 0,0,0 1,0,1 0,0,1 0,1,0 1,0,0 1,0,1 0,0,0 1,1,1 1,1,0 0,0,0 0,0,1 0,0,1 1,1,0 1,1,1 0,1,1
1,1,1 1,0,0 0,1,0 1,0,0 0,0,1 0,1,0 0,0,0 0,0,1 0,1,0 0,1,0 1,1,1 0,1,0 0,0,0 0,1,0 0,1,1 1,0,0
1,1,1 0,0,0 0,1,0 0,0,0 0,1,1 1,0,1 0,1,0 1,1,1 0,0,1 0,0,0 0,0,0 1,0,1 1,1,0 1,0,1 1,1,0 1,1,0
1,0,1 1,1,1 0,1,0 1,1,0 1,0,1 1,1,0 1,0,1 1,0,0 0,0,1 0,0,1 1,1,0 0,1,0 1,0,1 0,1,0 1,0,0 0,1,0
0,1,1 0,0,0 0,1,0 0,0,0 0,1,0 0,1,1 1,1,0 1,0,1 1,1,1 0,0,1 0,0,1 1,1,1 0,1,1 0,0,0 0,0,0 0,0,0
Resized:
0,1,0 1,0,1 0,1,0 0,0,1 1,1,0 0,1,1 1,1,0 0,0,0
1,1,1 0,0,1 0,1,0 0,0,0 0,0,1 1,1,0 1,0,0 0,1,0
0,1,1 0,0,1 1,0,1 0,1,1 0,0,1 1,1,1 0,0,1 0,0,0
0,1,0 0,1,0 0,0,0 1,0,0 1,0,1 0,0,1 0,1,0 1,1,1
0,0,1 0,1,1 0,0,1 0,0,1 0,1,0 0,1,1 0,0,0 0,1,1
0,1,0 1,0,1 1,0,0 0,0,0 1,1,1 0,0,0 0,0,1 0,1,0
1,1,1 0,1,0 0,0,1 0,0,0 0,1,0 0,0,0 0,0,0 1,1,0
0,0,0 0,1,0 0,1,0 1,0,1 0,0,1 0,0,1 0,0,0 0,0,0
将矩阵的大小更改为 2m × 2m 。这是这样做的 如下。如果m≥n,用2m-n×2m-n矩阵替换原图的每个像素点 所有值都等于原始像素。如果m < n,将矩阵分成2m × 2m 子矩阵,每个大小为 2n-m × 2n-m ,并用一个像素替换每个子矩阵 值在子矩阵中出现的频率更高。如果相等,选1。
How to resize region quadtree of height n with height m. QUADTREE is defined as follows:
An image is considered to be a 2n × 2n matrix, each of whose entries is 0 (white) or 1 (black). Each entry is called a pixel. Instead of storing the whole matrix, different data structures are used to reduce the size. The quad-tree is one such. A quad-tree is a rooted tree in which every node has either 0 or 4 children. Every node in the tree corresponds to some sub-matrix of the whole matrix, with size 2i × 2i for some 0 ≤ i ≤ n. The root node is the entire matrix. If all entries in a sub-matrix corresponding to a node are equal, the node is a leaf node, and it stores the value of the pixels in the sub-matrix. If there are distinct entries in the sub-matrix, divide it into 4 sub-matrices of size 2i-1 × 2i-1 , called top-left, top-right, bottom-right, bottom-left, and recursively construct the sub-trees corresponding to the 4 sub-matrices.
我实现了两个解决方案,第一个是四叉树的情况,第二个是二维向量(数组)的情况(我的第二个解决方案实际上是我的第一个,我错误地实现了它,忘了注意到我们需要特别的四叉树结构,但是如果它对某人有帮助,我仍然会留下第二个。
第一个解决方案 使用四叉树结构。
四叉树实现为四叉树模板结构,可以存储任何数据类型T
,默认情况下它存储二进制图像数据为size_t
类型(0/1,black/white) .有函数 CreateQT
用于创建和填充给定高度的四叉树,TraverseQT
一个遍历所有树节点并将给定回调应用于每个叶节点的函数,ResizeQT
实际解决给定任务- 将四叉树的大小从当前高度 n
调整为新高度 m
,DumpQT
函数将四叉树转储到字符串,以便将其输出到控制台。
main()
函数只是通过 rand() % 2
调用用随机二进制数据填充它来创建高度为 n
和 CreateQT
的输入树,然后它输出原始图像到控制台通过 DumpQT
调用,然后通过调用 ResizeQT
从高度 n
调整到高度 m
,并使用 DumpQT
.[=43= 将最终调整大小的图像输出到控制台]
#include <cstdlib>
#include <vector>
#include <utility>
#include <iostream>
#include <map>
#include <algorithm>
#include <array>
#include <memory>
#include <string>
#include <functional>
using namespace std;
template <typename T>
struct QuadTree {
typedef T data_t;
size_t height() const {
return st[0] ? st[0]->height() + 1 : 0;
}
T data = T();
// Sub-trees, in order Top-Left, Top-Right, Bottom-Left, Bottom-Right.
array< shared_ptr<QuadTree>, 4 > st = {};
};
template <typename T>
static shared_ptr< QuadTree<T> > CreateQT(size_t const height, function<T()> const & filler) {
shared_ptr< QuadTree<T> > r(new QuadTree<T>());
if (height <= 0)
r->data = filler();
else
for (size_t i = 0; i < r->st.size(); ++i)
r->st[i] = CreateQT(height - 1, filler);
return r;
}
template <typename T>
static void TraverseQT(QuadTree<T> const & qt, function<void(T const &)> const & visitor) {
if (qt.height() <= 0)
visitor(qt.data);
else
for (size_t i = 0; i < qt.st.size(); ++i)
TraverseQT<T>(*qt.st[i], visitor);
}
template <typename T>
static void ResizeQT(QuadTree<T> & qt, size_t const m) {
size_t const n = qt.height();
if (n == m)
return;
if (n > 0 && m > 0) {
for (size_t i = 0; i < qt.st.size(); ++i)
ResizeQT(*qt.st[i], m - 1);
} else if (m > 0) {
qt.st = CreateQT<T>(m, [&](){ return qt.data; })->st;
qt.data = T();
} else if (n > 0) {
map<T, size_t> cnt;
TraverseQT<T>(qt, [&](T const & v){ ++cnt[v]; });
// Find max
pair<T, size_t> maxv = {{}, 0};
for (auto const & p: cnt)
if (p.second > maxv.second)
maxv = p;
qt.data = maxv.first;
for (size_t i = 0; i < qt.st.size(); ++i)
qt.st[i].reset();
}
return;
}
string VecToStr(vector<string> const & a) {
string r;
for (size_t i = 0; i < a.size(); ++i) {
r += a[i];
if (i < a.size() - 1)
r += "\n";
}
return r;
}
template <typename T>
static vector<string> DumpQT(QuadTree<T> const & qt) {
if (qt.height() <= 0)
return {to_string(qt.data)};
auto JoinH = [](vector<string> const & a, vector<string> const & b) {
vector<string> r;
for (size_t i = 0; i < min(a.size(), b.size()); ++i)
r.push_back(a[i] + " " + b[i]);
return r;
};
auto JoinV = [](vector<string> const & a, vector<string> const & b) {
vector<string> r = a;
r.insert(r.end(), b.begin(), b.end());
return r;
};
return JoinV(
JoinH(DumpQT(*qt.st[0]), DumpQT(*qt.st[1])),
JoinH(DumpQT(*qt.st[2]), DumpQT(*qt.st[3]))
);
}
int main() {
try {
vector< pair<size_t, size_t> > const nm = {{2, 3}, {3, 3}, {4, 3}};
srand(0);
typedef QuadTree<size_t> ImgQT;
// Iterate through all "nm" tests
for (size_t t = 0; t < nm.size(); ++t) {
size_t n = nm[t].first, m = nm[t].second;
cout << "n = " << n << ", m = " << m << endl;
// Create/Fill input img of size 2^n with random values.
ImgQT img = *CreateQT<ImgQT::data_t>(n, []()->size_t{ return rand() % 2; });
cout << "Original:" << endl << VecToStr(DumpQT(img)) << endl;
// Solve task, resize to 2^m.
ResizeQT(img, m);
cout << "Resized:" << endl << VecToStr(DumpQT(img)) << endl;
}
return 0;
} catch (exception const & ex) {
cout << "Exception: " << ex.what() << endl;
return -1;
} catch (...) {
cout << "Unknown Exception!" << endl;
return -1;
}
}
控制台输出:
n = 2, m = 3
Original:
0 1 1 1
0 1 1 1
0 0 0 1
1 0 1 1
Resized:
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1
1 1 0 0 1 1 1 1
1 1 0 0 1 1 1 1
n = 3, m = 3
Original:
1 1 0 1 0 1 1 1
1 0 1 0 1 1 0 1
1 1 1 0 1 0 1 0
1 0 0 0 1 1 0 1
0 0 1 1 0 0 0 0
1 0 0 1 1 0 1 1
1 0 0 0 1 1 1 1
1 0 0 0 0 0 1 0
Resized:
1 1 0 1 0 1 1 1
1 0 1 0 1 1 0 1
1 1 1 0 1 0 1 0
1 0 0 0 1 1 0 1
0 0 1 1 0 0 0 0
1 0 0 1 1 0 1 1
1 0 0 0 1 1 1 1
1 0 0 0 0 0 1 0
n = 4, m = 3
Original:
1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0
1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 1
1 1 1 1 0 1 1 0 1 1 1 1 0 0 0 1
1 1 0 0 1 1 0 0 0 1 0 1 1 1 0 1
1 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1
0 1 0 0 1 0 0 1 0 1 1 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 1
1 1 1 1 0 1 1 1 0 0 1 1 0 1 1 1
0 1 0 1 1 0 1 1 1 1 0 0 0 1 1 0
1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1
0 0 1 1 0 0 0 1 1 1 0 0 1 0 0 0
1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 1 0 1 1 0 0 1 1 1 1 1
1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1
0 0 0 1 1 1 1 0 0 1 0 1 0 0 0 1
Resized:
0 0 0 0 0 0 0 0
1 0 1 0 1 1 0 1
1 0 1 0 0 1 0 1
0 0 0 0 0 1 0 0
1 1 0 1 0 0 0 1
0 1 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 1
第二种解决方案 使用二维向量。
在代码的开头,使用您想要的 n
和 m
值向 nm
数组添加额外的测试。输入图像 pre-filled 具有小的随机整数值,如果需要,您可以更改它以读取一些输入。
每个图像像素表示为一个 fixed-size 数组,其大小等于通道数(例如,1 代表灰色,3 代表 RGB)。在下一个代码中,为简单起见,每个像素都有 1 个通道,只有一个整数。通道数由 nchans
常量配置,将 nchans
更改为例如3 用于测试 RGB 图像。
每个像素都填充有随机整数,随机整数的范围由代码中的下一个表达式控制rand() % (t <= 1 ? 10 : 3)
,修改模数后的值%
以更改可能值的范围大小。
#include <cstdlib>
#include <vector>
#include <utility>
#include <iostream>
#include <map>
#include <algorithm>
#include <array>
using namespace std;
int main() {
try {
vector< pair<size_t, size_t> > const nm = {{2, 3}, {3, 3}, {4, 3}};
size_t const nchans = 1; // Number of channels (colors), e.g. 1 for Gray and 3 for RGB.
typedef array<size_t, nchans> PixelT;
srand(0);
// Iterate through all "nm" tests
for (size_t t = 0; t < nm.size(); ++t) {
vector< vector<PixelT> > img;
size_t n = nm[t].first, m = nm[t].second;
cout << "n = " << n << ", m = " << m << endl;
cout << "Original:" << endl;
// Create/Fill input img of size 2^n with random values.
// (1 << n) is same as 2^n (power of 2).
for (size_t i = 0; i < (1 << n); ++i) {
img.resize(img.size() + 1);
for (size_t j = 0; j < (1 << n); ++j) {
PixelT p = {};
for (size_t k = 0; k < p.size(); ++k) {
p[k] = rand() % (t <= 1 ? 10 : 3);
cout << p[k];
if (k < p.size() - 1)
cout << ",";
}
cout << " ";
img[i].push_back(p);
}
cout << endl;
}
// Solve task, resize to 2^m.
vector< vector<PixelT> > oimg;
if (n <= m) {
for (size_t i = 0; i < (1 << m); ++i) {
oimg.resize(oimg.size() + 1);
for (size_t j = 0; j < (1 << m); ++j) {
oimg[i].push_back(
img[i >> (m - n)][j >> (m - n)]
);
}
}
} else {
for (size_t i = 0; i < (1 << m); ++i) {
oimg.resize(oimg.size() + 1);
for (size_t j = 0; j < (1 << m); ++j) {
// Count number of occurances
map<PixelT, size_t> cnt;
for (size_t k = (i << (n - m)); k < ((i << (n - m)) + (1 << (n - m))); ++k)
for (size_t l = (j << (n - m)); l < ((j << (n - m)) + (1 << (n - m))); ++l)
++cnt[img[k][l]];
// Find max
pair<PixelT, size_t> maxv = {{}, 0};
for (auto const & p: cnt)
if (p.second > maxv.second)
maxv = p;
oimg[i].push_back(maxv.first);
}
}
}
// Output results
cout << "Resized:" << endl;
for (size_t i = 0; i < oimg.size(); ++i) {
for (size_t j = 0; j < oimg[i].size(); ++j) {
auto const & p = oimg[i][j];
for (size_t k = 0; k < p.size(); ++k) {
cout << p[k];
if (k < p.size() - 1)
cout << ",";
}
cout << " ";
}
cout << endl;
}
}
return 0;
} catch (exception const & ex) {
cout << "Exception: " << ex.what() << endl;
return -1;
} catch (...) {
cout << "Unknown Exception!" << endl;
return -1;
}
}
灰度图像 (nchans = 1
) 的示例输出:
n = 2, m = 3
Original:
8 9 8 7
5 7 5 5
0 2 3 0
2 1 7 1
Resized:
8 8 9 9 8 8 7 7
8 8 9 9 8 8 7 7
5 5 7 7 5 5 5 5
5 5 7 7 5 5 5 5
0 0 2 2 3 3 0 0
0 0 2 2 3 3 0 0
2 2 1 1 7 7 1 1
2 2 1 1 7 7 1 1
n = 3, m = 3
Original:
5 5 7 0 6 1 5 6
7 3 1 0 5 8 6 0
0 7 7 7 1 7 6 7
3 8 3 7 7 4 2 1
8 6 9 4 9 5 8 9
9 6 1 4 4 6 8 2
2 4 7 6 8 2 7 3
3 3 0 2 7 5 1 4
Resized:
5 5 7 0 6 1 5 6
7 3 1 0 5 8 6 0
0 7 7 7 1 7 6 7
3 8 3 7 7 4 2 1
8 6 9 4 9 5 8 9
9 6 1 4 4 6 8 2
2 4 7 6 8 2 7 3
3 3 0 2 7 5 1 4
n = 4, m = 3
Original:
2 2 2 2 2 1 2 2 2 0 1 0 0 0 0 2
0 0 2 2 2 2 1 2 1 2 1 2 0 1 1 2
1 0 2 0 1 0 2 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 1 1 1 1 1 1 0 2 0 1
2 1 0 0 2 2 1 1 0 1 1 2 1 1 2 0
1 1 0 0 1 1 1 2 2 1 2 2 0 2 1 2
1 0 0 0 1 2 1 0 2 2 0 0 0 2 1 2
2 1 0 0 1 2 1 0 1 0 2 2 2 0 2 2
0 1 1 2 2 1 0 2 1 0 1 2 0 2 2 1
0 0 0 2 0 1 2 2 2 1 1 2 1 1 1 2
1 1 1 0 2 2 2 1 1 2 1 0 0 0 0 2
1 0 0 0 2 2 1 1 2 2 0 0 1 1 1 2
1 2 2 1 1 1 2 2 2 2 0 0 2 2 2 2
1 2 1 2 2 2 2 2 0 0 2 2 0 0 0 2
0 0 0 0 2 0 0 1 1 2 2 0 1 1 0 0
0 0 1 1 0 0 1 1 0 0 1 2 1 2 1 0
Resized:
0 2 2 2 2 1 0 2
0 0 0 1 1 1 1 1
1 0 1 1 1 2 1 2
1 0 1 0 2 0 0 2
0 2 1 2 1 1 1 1
1 0 2 1 2 0 0 2
1 1 1 2 0 0 0 2
0 0 0 1 0 2 1 0
RGB 图像 (nchans = 3
) 的示例输出:
n = 2, m = 3
Original:
8,9,8 7,5,7 5,5,0 2,3,0
2,1,7 1,5,5 7,0,6 1,5,6
7,3,1 0,5,8 6,0,0 7,7,7
1,7,6 7,3,8 3,7,7 4,2,1
Resized:
8,9,8 8,9,8 7,5,7 7,5,7 5,5,0 5,5,0 2,3,0 2,3,0
8,9,8 8,9,8 7,5,7 7,5,7 5,5,0 5,5,0 2,3,0 2,3,0
2,1,7 2,1,7 1,5,5 1,5,5 7,0,6 7,0,6 1,5,6 1,5,6
2,1,7 2,1,7 1,5,5 1,5,5 7,0,6 7,0,6 1,5,6 1,5,6
7,3,1 7,3,1 0,5,8 0,5,8 6,0,0 6,0,0 7,7,7 7,7,7
7,3,1 7,3,1 0,5,8 0,5,8 6,0,0 6,0,0 7,7,7 7,7,7
1,7,6 1,7,6 7,3,8 7,3,8 3,7,7 3,7,7 4,2,1 4,2,1
1,7,6 1,7,6 7,3,8 7,3,8 3,7,7 3,7,7 4,2,1 4,2,1
n = 3, m = 3
Original:
8,6,9 4,9,5 8,9,9 6,1,4 4,6,8 2,2,4 7,6,8 2,7,3
3,3,0 2,7,5 1,4,3 2,9,4 9,6,4 7,3,5 3,3,0 4,3,1
4,5,9 0,7,6 9,6,9 7,0,3 2,4,1 2,5,1 9,7,0 0,4,8
4,7,6 1,8,2 0,4,1 5,7,0 4,2,6 7,3,4 8,4,4 1,7,6
6,3,0 2,7,0 7,8,3 3,9,3 1,4,1 3,2,1 4,0,9 4,1,2
0,2,8 6,1,5 6,9,8 5,7,0 4,3,5 1,4,7 6,6,1 7,4,1
3,9,4 6,4,9 5,7,0 2,5,0 6,0,2 3,5,7 8,7,5 1,0,7
3,1,6 2,7,2 1,3,2 5,5,6 5,9,7 3,3,7 2,2,1 4,6,5
Resized:
8,6,9 4,9,5 8,9,9 6,1,4 4,6,8 2,2,4 7,6,8 2,7,3
3,3,0 2,7,5 1,4,3 2,9,4 9,6,4 7,3,5 3,3,0 4,3,1
4,5,9 0,7,6 9,6,9 7,0,3 2,4,1 2,5,1 9,7,0 0,4,8
4,7,6 1,8,2 0,4,1 5,7,0 4,2,6 7,3,4 8,4,4 1,7,6
6,3,0 2,7,0 7,8,3 3,9,3 1,4,1 3,2,1 4,0,9 4,1,2
0,2,8 6,1,5 6,9,8 5,7,0 4,3,5 1,4,7 6,6,1 7,4,1
3,9,4 6,4,9 5,7,0 2,5,0 6,0,2 3,5,7 8,7,5 1,0,7
3,1,6 2,7,2 1,3,2 5,5,6 5,9,7 3,3,7 2,2,1 4,6,5
n = 4, m = 3
Original:
1,1,0 1,0,0 1,0,1 1,0,0 0,1,0 1,0,1 0,1,0 0,0,1 0,1,1 1,1,0 1,0,0 0,1,1 1,1,0 0,1,0 1,1,0 0,0,0
0,1,0 1,1,1 1,0,1 0,1,0 0,1,0 0,0,0 1,0,0 0,0,1 1,1,0 1,0,1 0,1,0 0,1,1 0,0,1 1,1,0 0,0,1 1,0,1
0,0,1 1,0,1 0,1,0 1,0,0 0,1,0 0,1,0 1,0,1 1,1,0 0,0,1 1,0,0 0,1,0 0,1,1 1,0,1 1,0,0 0,1,0 1,1,1
1,1,1 1,1,1 1,1,1 0,0,1 1,1,1 0,0,0 1,0,0 0,0,0 1,1,1 1,1,0 1,1,0 1,1,0 0,1,0 1,0,0 0,1,1 0,1,0
0,1,1 0,0,0 0,1,1 0,0,1 1,1,0 1,0,1 0,1,0 1,0,1 1,1,0 0,0,1 1,1,0 1,0,0 1,0,0 0,0,1 1,1,1 1,0,0
1,1,1 0,1,1 1,1,0 0,0,1 1,0,1 1,0,0 0,1,1 0,1,1 0,1,1 1,1,1 1,1,1 1,1,1 1,1,0 0,1,1 0,0,0 0,1,0
0,1,0 1,0,0 1,1,1 0,1,1 0,0,0 0,0,0 1,0,0 1,0,0 1,0,1 1,0,1 0,0,1 1,0,0 0,1,1 1,1,0 0,1,0 1,1,1
0,1,0 1,0,0 1,0,0 0,1,0 1,1,1 1,0,0 1,1,0 0,0,1 1,1,1 1,1,0 1,1,0 0,1,0 0,1,0 1,1,1 1,1,1 1,0,1
1,0,0 0,0,1 1,0,1 0,1,1 1,1,1 1,0,1 0,1,0 0,1,1 0,1,0 0,1,0 1,1,1 1,0,1 1,0,1 1,0,0 1,1,0 0,1,1
0,1,0 1,0,1 1,1,0 0,1,1 0,0,1 0,0,1 0,0,1 1,1,1 1,1,1 1,1,0 1,0,0 0,1,1 0,0,0 0,1,1 1,0,0 1,0,1
0,1,1 0,1,0 0,0,0 1,0,1 1,0,1 1,0,0 1,0,0 0,1,1 1,1,1 1,0,0 1,0,1 0,0,0 1,0,0 0,1,1 0,1,0 0,1,0
0,1,0 0,0,0 1,0,1 0,0,1 0,1,0 1,0,0 1,0,1 0,0,0 1,1,1 1,1,0 0,0,0 0,0,1 0,0,1 1,1,0 1,1,1 0,1,1
1,1,1 1,0,0 0,1,0 1,0,0 0,0,1 0,1,0 0,0,0 0,0,1 0,1,0 0,1,0 1,1,1 0,1,0 0,0,0 0,1,0 0,1,1 1,0,0
1,1,1 0,0,0 0,1,0 0,0,0 0,1,1 1,0,1 0,1,0 1,1,1 0,0,1 0,0,0 0,0,0 1,0,1 1,1,0 1,0,1 1,1,0 1,1,0
1,0,1 1,1,1 0,1,0 1,1,0 1,0,1 1,1,0 1,0,1 1,0,0 0,0,1 0,0,1 1,1,0 0,1,0 1,0,1 0,1,0 1,0,0 0,1,0
0,1,1 0,0,0 0,1,0 0,0,0 0,1,0 0,1,1 1,1,0 1,0,1 1,1,1 0,0,1 0,0,1 1,1,1 0,1,1 0,0,0 0,0,0 0,0,0
Resized:
0,1,0 1,0,1 0,1,0 0,0,1 1,1,0 0,1,1 1,1,0 0,0,0
1,1,1 0,0,1 0,1,0 0,0,0 0,0,1 1,1,0 1,0,0 0,1,0
0,1,1 0,0,1 1,0,1 0,1,1 0,0,1 1,1,1 0,0,1 0,0,0
0,1,0 0,1,0 0,0,0 1,0,0 1,0,1 0,0,1 0,1,0 1,1,1
0,0,1 0,1,1 0,0,1 0,0,1 0,1,0 0,1,1 0,0,0 0,1,1
0,1,0 1,0,1 1,0,0 0,0,0 1,1,1 0,0,0 0,0,1 0,1,0
1,1,1 0,1,0 0,0,1 0,0,0 0,1,0 0,0,0 0,0,0 1,1,0
0,0,0 0,1,0 0,1,0 1,0,1 0,0,1 0,0,1 0,0,0 0,0,0