CUDA - CUBLAS:解决许多 (3x3) 密集线性系统的问题
CUDA - CUBLAS: issues solving many (3x3) dense linear systems
我正在尝试使用 CUDA 10.1 解决大约 1200000 个线性系统(3x3,Ax=B),特别是使用 CUBLAS 库。我从 this (useful!) post 中得到启发,并在统一内存版本中重写了建议的代码。该算法首先使用 cublasgetrfBatched() 执行 LU 分解,然后连续两次调用 cublastrsm() 求解上三角或下三角线性系统。代码附在下面。它可以正确处理大约 10000 个矩阵,在这种情况下,执行 LU 分解(在 NVIDIA GeForce 930MX 上)需要大约 570 毫秒,求解系统需要大约 311 毫秒。
我的issues/questions是:
过载问题:为超过 10k 的矩阵分配内存时崩溃。为什么?我如何改进我的代码才能解决整批 120 万个矩阵?
时间问题:我的目标是在 1 秒内解决所有这些系统。我目前是否遵循正确的方法?还有其他建议吗?
是否可能 and/or 有用,如果有用,如何使用 'streams' 批次的 10k 矩阵?
代码:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <algorithm>
#include <cmath>
#include <iostream>
#include <vector>
#include <ctime>
#include <ratio>
#include <chrono>
#include <random>
#include <time.h>
#include <math.h>
// CUDA
#include <cuda.h>
#include <cuda_runtime.h>
#include "device_launch_parameters.h"
#include <cusolverDn.h>
//#include "Utilities.cuh"
using namespace std;
using namespace std::chrono;
/************************************/
/* COEFFICIENT REARRANGING FUNCTION */
/************************************/
void rearrange(double** vec, int* pivotArray, int N, int numMatrices) {
for (int nm = 0; nm < numMatrices; nm++) {
for (int i = 0; i < N; i++) {
double temp = vec[nm][i];
vec[nm][i] = vec[nm][pivotArray[N*i + nm] - 1];
vec[nm][pivotArray[N * i + nm] - 1] = temp;
}
}
}
/************************************/
/* MAIN */
/************************************/
int main() {
const int N = 3;
const int numMatrices = 10000; // I want 1200000
// random generator to fill matrices and coefficients
random_device device;
mt19937 generator(device());
uniform_real_distribution<double> distribution(1., 5.);
//ALLOCATE MEMORY - using unified memory
double** h_A;
cudaMallocManaged(&h_A, sizeof(double*) * numMatrices);
for (int nm = 0; nm < numMatrices; nm++) {
cudaMallocManaged(&(h_A[nm]), sizeof(double) * N * N);
}
double** h_b;
cudaMallocManaged(&h_b, sizeof(double*) * numMatrices);
for (int nm = 0; nm < numMatrices; nm++) {
cudaMallocManaged(&(h_b[nm]), sizeof(double) * N );
}
cout << " memory allocated" << endl;
// FILL MATRICES
for (int nm = 0; nm < numMatrices; nm++) {
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
h_A[nm][j * N + i] = distribution(generator);
}
}
}
cout << " Matrix filled " << endl;
// FILL COEFFICIENTS
for (int nm = 0; nm < numMatrices; nm++) {
for (int i = 0; i < N; i++) {
h_b[nm][i] = distribution(generator);
}
}
cout << " Coeff. vector filled " << endl;
cout << endl;
// --- CUDA solver initialization
cublasHandle_t cublas_handle;
cublasCreate_v2(&cublas_handle);
int* PivotArray;
cudaMallocManaged(&PivotArray, N * numMatrices * sizeof(int));
int* infoArray;
cudaMallocManaged(&infoArray, numMatrices * sizeof(int));
//CUBLAS LU SOLVER
high_resolution_clock::time_point t1 = high_resolution_clock::now();
cublasDgetrfBatched(cublas_handle, N, h_A, N, PivotArray, infoArray, numMatrices);
cudaDeviceSynchronize();
high_resolution_clock::time_point t2 = high_resolution_clock::now();
duration<double> time_span = duration_cast<duration<double>>(t2 - t1);
cout << "It took " << time_span.count() * 1000. << " milliseconds." << endl;
for (int i = 0; i < numMatrices; i++)
if (infoArray[i] != 0) {
fprintf(stderr, "Factorization of matrix %d Failed: Matrix may be singular\n", i);
}
// rearrange coefficient
// (temporarily on CPU, this step will be on a GPU Kernel as well)
high_resolution_clock::time_point tA = high_resolution_clock::now();
rearrange(h_b, PivotArray, N, numMatrices);
high_resolution_clock::time_point tB = high_resolution_clock::now();
duration<double> time_spanA = duration_cast<duration<double>>(tB - tA);
cout << "rearrangement took " << time_spanA.count() * 1000. << " milliseconds." << endl;
//INVERT UPPER AND LOWER TRIANGULAR MATRICES
// --- Function solves the triangular linear system with multiple right-hand sides
// --- Function overrides b as a result
const double alpha = 1.f;
high_resolution_clock::time_point t3 = high_resolution_clock::now();
cublasDtrsmBatched(cublas_handle, CUBLAS_SIDE_LEFT, CUBLAS_FILL_MODE_LOWER, CUBLAS_OP_N, CUBLAS_DIAG_UNIT, N, 1, &alpha, h_A, N, h_b, N, numMatrices);
cublasDtrsmBatched(cublas_handle, CUBLAS_SIDE_LEFT, CUBLAS_FILL_MODE_UPPER, CUBLAS_OP_N, CUBLAS_DIAG_NON_UNIT, N, 1, &alpha, h_A, N, h_b, N, numMatrices);
cudaDeviceSynchronize();
high_resolution_clock::time_point t4 = high_resolution_clock::now();
duration<double> time_span2 = duration_cast<duration<double>>(t4 - t3);
cout << "second step took " << time_span2.count() * 1000. << " milliseconds." << endl;
// --- Free resources
if (h_A) cudaFree(h_A);
if (h_b) cudaFree(h_b);
cudaDeviceReset();
return 0;
}
Overload issue: it crashes allocating memory for more than 10k matrices. Why? How can I improve my code in order to solve the whole batch of 1.2 million matrices?
在我看来,您的代码中最大的问题是您在这些键分配循环中对托管内存的使用效率极低:
//ALLOCATE MEMORY - using unified memory
double** h_A;
cudaMallocManaged(&h_A, sizeof(double*) * numMatrices);
for (int nm = 0; nm < numMatrices; nm++) {
cudaMallocManaged(&(h_A[nm]), sizeof(double) * N * N);
}
double** h_b;
cudaMallocManaged(&h_b, sizeof(double*) * numMatrices);
for (int nm = 0; nm < numMatrices; nm++) {
cudaMallocManaged(&(h_b[nm]), sizeof(double) * N );
}
问题是每次调用 cudaMallocManaged
都有一个 最小粒度 。这意味着如果你请求分配 1 个字节,它实际上会用掉大约 4kbyte 的内存(我相信这是 linux 分配粒度。看起来你在 windows,我相信windows 分配粒度可能更大)。此外,当您启动内核时,这会在托管内存子系统上造成巨大的低效数据传输负载(内核将在您的 cublas
调用中启动)。
一个更好的方法是进行一次大分配,而不是 allocation-in-a-loop,然后使用指针算法细分该分配。代码可能如下所示:
//ALLOCATE MEMORY - using unified memory
double** h_A;
cudaMallocManaged(&h_A, sizeof(double*) * numMatrices);
cudaMallocManaged(&(h_A[0]), sizeof(double)*numMatrices*N*N);
for (int nm = 1; nm < numMatrices; nm++) {
h_A[nm] = h_A[nm-1]+ N * N;
}
double** h_b;
cudaMallocManaged(&h_b, sizeof(double*) * numMatrices);
cudaMallocManaged(&(h_b[0]), sizeof(double) * numMatrices * N);
for (int nm = 1; nm < numMatrices; nm++) {
h_b[nm] = h_b[nm-1] + N;
}
这样做的另一个好处是分配过程运行快了很多。
Time issue: my goal would be to solve all of these systems in less than 1 second. Am I currently following the correct approach? Any suggestions otherwise?
通过更改您的代码,我能够 运行 在 1GB GPU (GeForce GT640) 上成功地使用:
const int numMatrices = 1200000;
输出如下:
$ ./t81
memory allocated
Matrix filled
Coeff. vector filled
It took 70.3032 milliseconds.
rearrangement took 60.02 milliseconds.
second step took 156.067 milliseconds.
您的 GPU 可能有点慢,但我认为整体时间应该不会超过 1 秒。
Would it be possible and/or useful, and if yes how, to use 'streams' of batches of 10k matrices?
有了上面的变化,我认为你不需要担心这个。流在这里对计算操作的重叠没有帮助。它们可以帮助 copy/compute 重叠(尽管在您的 GPU 上可能不多)但是这很难在 windows 上使用托管内存进行架构。对于 windows 用法,如果您想探索 copy/compute overlap.
,我可能建议切换到主机和设备内存的普通 CUDA 分离
顺便说一句,您可以获得一组 cublas 调用,通过使用直接反转可以更快地完成工作。 CUBLAS 有一种批量直接反演的方法。我通常不会建议将此用于线性方程的求解,但对于一组 3x3 或 4x4 的反演可能需要考虑,您可以在其中使用行列式方法轻松检查奇点。 是一个例子。
我正在尝试使用 CUDA 10.1 解决大约 1200000 个线性系统(3x3,Ax=B),特别是使用 CUBLAS 库。我从 this (useful!) post 中得到启发,并在统一内存版本中重写了建议的代码。该算法首先使用 cublasgetrfBatched() 执行 LU 分解,然后连续两次调用 cublastrsm() 求解上三角或下三角线性系统。代码附在下面。它可以正确处理大约 10000 个矩阵,在这种情况下,执行 LU 分解(在 NVIDIA GeForce 930MX 上)需要大约 570 毫秒,求解系统需要大约 311 毫秒。
我的issues/questions是:
过载问题:为超过 10k 的矩阵分配内存时崩溃。为什么?我如何改进我的代码才能解决整批 120 万个矩阵?
时间问题:我的目标是在 1 秒内解决所有这些系统。我目前是否遵循正确的方法?还有其他建议吗?
是否可能 and/or 有用,如果有用,如何使用 'streams' 批次的 10k 矩阵?
代码:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <algorithm>
#include <cmath>
#include <iostream>
#include <vector>
#include <ctime>
#include <ratio>
#include <chrono>
#include <random>
#include <time.h>
#include <math.h>
// CUDA
#include <cuda.h>
#include <cuda_runtime.h>
#include "device_launch_parameters.h"
#include <cusolverDn.h>
//#include "Utilities.cuh"
using namespace std;
using namespace std::chrono;
/************************************/
/* COEFFICIENT REARRANGING FUNCTION */
/************************************/
void rearrange(double** vec, int* pivotArray, int N, int numMatrices) {
for (int nm = 0; nm < numMatrices; nm++) {
for (int i = 0; i < N; i++) {
double temp = vec[nm][i];
vec[nm][i] = vec[nm][pivotArray[N*i + nm] - 1];
vec[nm][pivotArray[N * i + nm] - 1] = temp;
}
}
}
/************************************/
/* MAIN */
/************************************/
int main() {
const int N = 3;
const int numMatrices = 10000; // I want 1200000
// random generator to fill matrices and coefficients
random_device device;
mt19937 generator(device());
uniform_real_distribution<double> distribution(1., 5.);
//ALLOCATE MEMORY - using unified memory
double** h_A;
cudaMallocManaged(&h_A, sizeof(double*) * numMatrices);
for (int nm = 0; nm < numMatrices; nm++) {
cudaMallocManaged(&(h_A[nm]), sizeof(double) * N * N);
}
double** h_b;
cudaMallocManaged(&h_b, sizeof(double*) * numMatrices);
for (int nm = 0; nm < numMatrices; nm++) {
cudaMallocManaged(&(h_b[nm]), sizeof(double) * N );
}
cout << " memory allocated" << endl;
// FILL MATRICES
for (int nm = 0; nm < numMatrices; nm++) {
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
h_A[nm][j * N + i] = distribution(generator);
}
}
}
cout << " Matrix filled " << endl;
// FILL COEFFICIENTS
for (int nm = 0; nm < numMatrices; nm++) {
for (int i = 0; i < N; i++) {
h_b[nm][i] = distribution(generator);
}
}
cout << " Coeff. vector filled " << endl;
cout << endl;
// --- CUDA solver initialization
cublasHandle_t cublas_handle;
cublasCreate_v2(&cublas_handle);
int* PivotArray;
cudaMallocManaged(&PivotArray, N * numMatrices * sizeof(int));
int* infoArray;
cudaMallocManaged(&infoArray, numMatrices * sizeof(int));
//CUBLAS LU SOLVER
high_resolution_clock::time_point t1 = high_resolution_clock::now();
cublasDgetrfBatched(cublas_handle, N, h_A, N, PivotArray, infoArray, numMatrices);
cudaDeviceSynchronize();
high_resolution_clock::time_point t2 = high_resolution_clock::now();
duration<double> time_span = duration_cast<duration<double>>(t2 - t1);
cout << "It took " << time_span.count() * 1000. << " milliseconds." << endl;
for (int i = 0; i < numMatrices; i++)
if (infoArray[i] != 0) {
fprintf(stderr, "Factorization of matrix %d Failed: Matrix may be singular\n", i);
}
// rearrange coefficient
// (temporarily on CPU, this step will be on a GPU Kernel as well)
high_resolution_clock::time_point tA = high_resolution_clock::now();
rearrange(h_b, PivotArray, N, numMatrices);
high_resolution_clock::time_point tB = high_resolution_clock::now();
duration<double> time_spanA = duration_cast<duration<double>>(tB - tA);
cout << "rearrangement took " << time_spanA.count() * 1000. << " milliseconds." << endl;
//INVERT UPPER AND LOWER TRIANGULAR MATRICES
// --- Function solves the triangular linear system with multiple right-hand sides
// --- Function overrides b as a result
const double alpha = 1.f;
high_resolution_clock::time_point t3 = high_resolution_clock::now();
cublasDtrsmBatched(cublas_handle, CUBLAS_SIDE_LEFT, CUBLAS_FILL_MODE_LOWER, CUBLAS_OP_N, CUBLAS_DIAG_UNIT, N, 1, &alpha, h_A, N, h_b, N, numMatrices);
cublasDtrsmBatched(cublas_handle, CUBLAS_SIDE_LEFT, CUBLAS_FILL_MODE_UPPER, CUBLAS_OP_N, CUBLAS_DIAG_NON_UNIT, N, 1, &alpha, h_A, N, h_b, N, numMatrices);
cudaDeviceSynchronize();
high_resolution_clock::time_point t4 = high_resolution_clock::now();
duration<double> time_span2 = duration_cast<duration<double>>(t4 - t3);
cout << "second step took " << time_span2.count() * 1000. << " milliseconds." << endl;
// --- Free resources
if (h_A) cudaFree(h_A);
if (h_b) cudaFree(h_b);
cudaDeviceReset();
return 0;
}
Overload issue: it crashes allocating memory for more than 10k matrices. Why? How can I improve my code in order to solve the whole batch of 1.2 million matrices?
在我看来,您的代码中最大的问题是您在这些键分配循环中对托管内存的使用效率极低:
//ALLOCATE MEMORY - using unified memory
double** h_A;
cudaMallocManaged(&h_A, sizeof(double*) * numMatrices);
for (int nm = 0; nm < numMatrices; nm++) {
cudaMallocManaged(&(h_A[nm]), sizeof(double) * N * N);
}
double** h_b;
cudaMallocManaged(&h_b, sizeof(double*) * numMatrices);
for (int nm = 0; nm < numMatrices; nm++) {
cudaMallocManaged(&(h_b[nm]), sizeof(double) * N );
}
问题是每次调用 cudaMallocManaged
都有一个 最小粒度 。这意味着如果你请求分配 1 个字节,它实际上会用掉大约 4kbyte 的内存(我相信这是 linux 分配粒度。看起来你在 windows,我相信windows 分配粒度可能更大)。此外,当您启动内核时,这会在托管内存子系统上造成巨大的低效数据传输负载(内核将在您的 cublas
调用中启动)。
一个更好的方法是进行一次大分配,而不是 allocation-in-a-loop,然后使用指针算法细分该分配。代码可能如下所示:
//ALLOCATE MEMORY - using unified memory
double** h_A;
cudaMallocManaged(&h_A, sizeof(double*) * numMatrices);
cudaMallocManaged(&(h_A[0]), sizeof(double)*numMatrices*N*N);
for (int nm = 1; nm < numMatrices; nm++) {
h_A[nm] = h_A[nm-1]+ N * N;
}
double** h_b;
cudaMallocManaged(&h_b, sizeof(double*) * numMatrices);
cudaMallocManaged(&(h_b[0]), sizeof(double) * numMatrices * N);
for (int nm = 1; nm < numMatrices; nm++) {
h_b[nm] = h_b[nm-1] + N;
}
这样做的另一个好处是分配过程运行快了很多。
Time issue: my goal would be to solve all of these systems in less than 1 second. Am I currently following the correct approach? Any suggestions otherwise?
通过更改您的代码,我能够 运行 在 1GB GPU (GeForce GT640) 上成功地使用:
const int numMatrices = 1200000;
输出如下:
$ ./t81
memory allocated
Matrix filled
Coeff. vector filled
It took 70.3032 milliseconds.
rearrangement took 60.02 milliseconds.
second step took 156.067 milliseconds.
您的 GPU 可能有点慢,但我认为整体时间应该不会超过 1 秒。
Would it be possible and/or useful, and if yes how, to use 'streams' of batches of 10k matrices?
有了上面的变化,我认为你不需要担心这个。流在这里对计算操作的重叠没有帮助。它们可以帮助 copy/compute 重叠(尽管在您的 GPU 上可能不多)但是这很难在 windows 上使用托管内存进行架构。对于 windows 用法,如果您想探索 copy/compute overlap.
,我可能建议切换到主机和设备内存的普通 CUDA 分离顺便说一句,您可以获得一组 cublas 调用,通过使用直接反转可以更快地完成工作。 CUBLAS 有一种批量直接反演的方法。我通常不会建议将此用于线性方程的求解,但对于一组 3x3 或 4x4 的反演可能需要考虑,您可以在其中使用行列式方法轻松检查奇点。