Apple eciesEncryptionCofactorVariableIVX963SHA256AESGCM vs BouncyCastle ECCDHwithSHA256KDF

Apple eciesEncryptionCofactorVariableIVX963SHA256AESGCM vs BouncyCastle ECCDHwithSHA256KDF

我正在尝试加密 Java (BouncyCastle) and iOS using the Apple algorithm eciesEncryptionCofactorVariableIVX963SHA256AESGCM.

之间的通信

Apple 的算法没有很好的记录,但我发现 this article 这很有帮助。

我还在 BouncyCastle documentation 中找到了以下算法,它似乎与我正在寻找的算法很接近:

package com.example.ios.encryption;

import org.bouncycastle.jce.ECNamedCurveTable;
import org.bouncycastle.jce.ECPointUtil;
import org.bouncycastle.jce.provider.BouncyCastleProvider;
import org.bouncycastle.jce.spec.ECNamedCurveSpec;
import org.bouncycastle.jce.spec.ECParameterSpec;
import org.bouncycastle.util.encoders.Base64;

import java.math.BigInteger;
import java.security.*;
import java.security.spec.ECPoint;
import java.security.spec.ECPrivateKeySpec;
import java.security.spec.ECPublicKeySpec;
import java.util.Arrays;

import javax.crypto.Cipher;
import javax.crypto.KeyAgreement;
import javax.crypto.SecretKey;
import javax.crypto.spec.GCMParameterSpec;
import javax.crypto.spec.SecretKeySpec;

public class IOSEncryptionECwithAES {

    public void testDecrypt() {

        // Receiver EC Public Key
        String pubKeyBase64 = "BBPT50Rn0PeeV0LxUbhDV7U1FUgVw9YLVctQx5HA+TiA3lp3k/cud8Xsjh6lytgaI5S7IUW1YouUiPNR/7LPArk=";
        PublicKey pubKey = getPublicKey(Base64.decode(pubKeyBase64));
        
        // Receiver EC Private Key
        String privateKeyBase64 = "BBPT50Rn0PeeV0LxUbhDV7U1FUgVw9YLVctQx5HA+TiA3lp3k/cud8Xsjh6lytgaI5S7IUW1YouUiPNR/7LPArkWcIYOQWtdkbTqmy++lz0cQ8ukWvUyhD9yzqZHPLQgQg==";
        PrivateKey privateKey = getPrivateKey(Base64.decode(privateKeyBase64));
    
        // Encrypted data
        String iosOutputBase64 = "BNNzHjSJQxP8jNuj5W9XSW0XNgpOlEHY/S4KzZQJFxwjzoujuwz5kJeOLj6cASBaYKePGLhkbE0qN20y8aHpU+PmeuDJWY7LZ25LjvutafOJGugdRZdURRwFSke7hzhXlSneaTFegT3xOoq9ffjCynwD7iRD";
        byte[] iosOutput = Base64.decode(iosOutputBase64);

        // Plaintext is a random UUID
        String plainText = "514227F0-51E9-41AC-9A39-42752E2ABADF";

        byte[] decryptedData = decryptEciesEncryptionCofactorVariableIVX963SHA256AESGCM(privateKey, iosOutput);
        System.out.println(new String(decryptedData));
    }

    public byte[] decryptEciesEncryptionCofactorVariableIVX963SHA256AESGCM(PrivateKey privateKey, byte[] iosOutput) throws Exception {

        // 1. Take ephemeral public key
        byte[] ephemeralKeyBytes = Arrays.copyOfRange(iosOutput, 0, 65);
        PublicKey ephemeralPublicKey = getPublicKey(ephemeralKeyBytes);
        byte[] encryptedData = Arrays.copyOfRange(iosOutput, 65, iosOutput.length);

        // 2. Key agreement using ECDH with Cofactor and integrated X9.63 
        byte[] kdfOut = getSharedSecret(ephemeralPublicKey, privateKey);

        byte[] secretKeyBytes = Arrays.copyOfRange(kdfOut, 0, 16);
        SecretKey secretKey = new SecretKeySpec(secretKeyBytes, "AES");

        // 4. Decrypt with AES key
        int tagLength = 128;
        byte[] iv = Arrays.copyOfRange(kdfOut, 16, kdfOut.length);
        GCMParameterSpec aesGcmParams = new GCMParameterSpec(tagLength, iv);
        Cipher c = Cipher.getInstance("AES/GCM/NoPadding");
        c.init(Cipher.DECRYPT_MODE, secretKey, aesGcmParams);
        byte[] decryptedData = c.doFinal(encryptedData);

        return decryptedData;
    }

    /**
     * Convert uncompressed public key into PublicKey using BouncyCastle
     * For an elliptic curve public key, the format follows the ANSI X9.63 standard
     * using a byte string of 04 || X || Y
     *
     * @param encodedBytes raw bytes received
     * @return the Elliptic-Curve Public Key based on curve SECP256R1
     */
    private PublicKey getPublicKey(byte[] encodedBytes) throws Exception {
        KeyFactory keyFactory = KeyFactory.getInstance("EC");
        ECParameterSpec ecParameterSpec = ECNamedCurveTable.getParameterSpec("secp256r1");
        ECNamedCurveSpec params = new ECNamedCurveSpec("secp256r1", ecParameterSpec.getCurve(), ecParameterSpec.getG(), ecParameterSpec.getN());
        ECPoint publicPoint =  ECPointUtil.decodePoint(params.getCurve(), encodedBytes);
        ECPublicKeySpec pubKeySpec = new ECPublicKeySpec(publicPoint, params);
        return keyFactory.generatePublic(pubKeySpec);
    }

  /**
   * Convert private key for external output from iOS
   * For an elliptic curve private key, the output is formatted as the public key
   * concatenated with the big endian encoding of the secret scalar, or 04 || X || Y || K.
   *
   * @param encodedBytes raw bytes received
   * @return the Elliptic-Curve Private Key based on curve SECP256R1
   */
  private PrivateKey getPrivateKey(byte[] encodedBytes) throws Exception {
        BigInteger s = new BigInteger(Arrays.copyOfRange(encodedBytes, 65, encodedBytes.length));
        ECParameterSpec ecParameterSpec = ECNamedCurveTable.getParameterSpec("secp256r1");
        ECNamedCurveSpec params = new ECNamedCurveSpec("secp256r1", ecParameterSpec.getCurve(), ecParameterSpec.getG(), ecParameterSpec.getN());
        ECPrivateKeySpec privateKeySpec = new ECPrivateKeySpec(s, params);
        KeyFactory keyFactory = KeyFactory.getInstance("EC");
        return keyFactory.generatePrivate(privateKeySpec);
  }

  /**
   * Key agreement using ECDH with Cofactor and integrated X9.63 KDF SHA-256
   * 
   * @param ephemeralPublicKey created by the sender
   * @param privateKey from the receiver
   * @return shared secret of 32-bytes containing the 128-bit AES key and 16-byte IV
   */
   private byte[] getSharedSecret(PublicKey ephemeralPublicKey, PrivateKey privateKey) throws Exception {
      String keyAgreementAlgorithm = "ECCDHwithSHA256KDF";
      KeyAgreement keyAgreement = KeyAgreement.getInstance(keyAgreementAlgorithm, new BouncyCastleProvider());
      keyAgreement.init(privateKey);
      keyAgreement.doPhase(ephemeralPublicKey, true);
      return keyAgreement.generateSecret();
  }
}

不幸的是,这不起作用并导致异常。

javax.crypto.AEADBadTagException: Tag mismatch!

    at java.base/com.sun.crypto.provider.NativeGaloisCounterMode.decryptFinal(NativeGaloisCounterMode.java:454)

我错过了什么?可以通过小改动修复此代码吗?

我确实通过使用 O2 Czech Republic 中的代码设法使它工作并且确实有效,但该代码来自 2017 年,我希望这些天可以用更少的行来完成当前版本的 BouncyCastle。

请参阅下面的工作代码。它将 KeyAgreement 和 KeyDerivationFunction 分成两个单独的函数。

   /**
     * Key agreement using ECDH with Cofactor and integrated X9.63 KDF SHA-256
     *
     * @param ephemeralPublicKey created by the sender
     * @param privateKey from the receiver
     * @return shared secret of 32-bytes containing the 128-bit AES key and 16-byte IV
     */
    private byte[] getInitialSecret(PublicKey ephemeralPublicKey, PrivateKey privateKey) throws Exception {
        String keyAgreementAlgorithm = "ECCDH"; // Seems to be equivalent to "ECDHC"
        KeyAgreement keyAgreement = KeyAgreement.getInstance(keyAgreementAlgorithm, new BouncyCastleProvider());
        keyAgreement.init(privateKey);
        keyAgreement.doPhase(ephemeralPublicKey, true);
        return keyAgreement.generateSecret();
    }

    /**
     * Derive actual SecretKey with X9.63 KDF SHA-256
     *
     * @param initialSecret output from the ECDH agreement with Cofactor
     * @param ephemeralKeyBytes emphemeral public key from sender
     * @return shared secret of 32-bytes containing the 128-bit AES key and 16-byte IV
     */
    private byte[] getDerivation(byte[] initialSecret, byte[] ephemeralKeyBytes) {
        KDF2BytesGenerator kdfGenerator = new KDF2BytesGenerator(new SHA256Digest());
        kdfGenerator.init(new KDFParameters(initialSecret, ephemeralKeyBytes));
        byte[] kdfOut = new byte[32]; 
        kdfGenerator.generateBytes(kdfOut, 0, 32);
        return kdfOut;
    }
  }

正在改变

byte[] kdfOut = getSharedSecret(ephemeralPublicKey, privateKey);

进入

byte[] initialSecret = getInitialSecret(ephemeralPublicKey, privateKey);
byte[] kdfOut = getDerivation(initialSecret, ephemeralKeyBytes);

虽然上面的代码确实有效,但正确的方法是将 ECCDHwithSHA256KDFUserKeyingMaterialSpec 一起使用,如下所示:

/**
   * Key agreement using ECDH with Cofactor and integrated X9.63 KDF SHA-256
   * 
   * @param ephemeralKeyBytes created by the sender
   * @param privateKey from the receiver
   * @return shared secret of 32-bytes containing the 128-bit AES key and 16-byte IV
   */
   private byte[] getSharedSecret(byte[] ephemeralKeyBytes, PrivateKey privateKey) throws Exception {
      PublicKey ephemeralPublicKey = getPublicKey(ephemeralKeyBytes);
      String keyAgreementAlgorithm = "ECCDHwithSHA256KDF";
      UserKeyingMaterialSpec spec = new UserKeyingMaterialSpec(ephemeralKeyBytes);
      KeyAgreement keyAgreement = KeyAgreement.getInstance(keyAgreementAlgorithm, new BouncyCastleProvider());
      keyAgreement.init(privateKey, spec);
      keyAgreement.doPhase(ephemeralPublicKey, true);
      return keyAgreement.generateSecret();
  }

这样一来,您可以使用 BouncyCastle 一次性完成密钥协议和 KDF,而不必将其一分为二。