sub-graph聚合的递归查询(任意深度)

Recursive query with sub-graph aggregation (arbitrary depth)

我问了一个问题 关于沿图聚合数量。提供的两个答案效果很好,但现在我正在尝试将 Cypher 查询扩展到可变深度图。

总而言之,我们从一堆叶子商店开始,这些商店都与特定供应商相关联,这是 Store 节点上的 属性。然后将库存转移到其他商店,每个供应商的比例对应于他们对原始商店的贡献。

因此对于节点 B02S2 贡献了 750/1250 = 60% 并且 S3 贡献了 40%。然后我们将 B02 的 600 个单位移动,其中 60% 属于 S240% 属于 S3,依此类推。

我们想知道 D01 中最后 700 个单位的百分比属于每个供应商。具有相同名称的供应商是同一供应商。所以对于上图我们期望:

S1, 38.09
S2, 27.61
S3, 34.28

我已经使用这个 Cypher 脚本准备了一个图表:

CREATE (A01:Store {Name: 'A01', Supplier: 'S1'})
CREATE (A02:Store {Name: 'A02', Supplier: 'S1'})
CREATE (A03:Store {Name: 'A03', Supplier: 'S2'})
CREATE (A04:Store {Name: 'A04', Supplier: 'S3'})
CREATE (A05:Store {Name: 'A05', Supplier: 'S1'})
CREATE (A06:Store {Name: 'A06', Supplier: 'S1'})
CREATE (A07:Store {Name: 'A07', Supplier: 'S2'})
CREATE (A08:Store {Name: 'A08', Supplier: 'S3'})

CREATE (B01:Store {Name: 'B01'})
CREATE (B02:Store {Name: 'B02'})
CREATE (B03:Store {Name: 'B03'})
CREATE (B04:Store {Name: 'B04'})

CREATE (C01:Store {Name: 'C01'})
CREATE (C02:Store {Name: 'C02'})

CREATE (D01:Store {Name: 'D01'})

CREATE (A01)-[:MOVE_TO {Quantity: 750}]->(B01)
CREATE (A02)-[:MOVE_TO {Quantity: 500}]->(B01)
CREATE (A03)-[:MOVE_TO {Quantity: 750}]->(B02)
CREATE (A04)-[:MOVE_TO {Quantity: 500}]->(B02)
CREATE (A05)-[:MOVE_TO {Quantity: 100}]->(B03)
CREATE (A06)-[:MOVE_TO {Quantity: 200}]->(B03)
CREATE (A07)-[:MOVE_TO {Quantity: 50}]->(B04)
CREATE (A08)-[:MOVE_TO {Quantity: 450}]->(B04)

CREATE (B01)-[:MOVE_TO {Quantity: 400}]->(C01)
CREATE (B02)-[:MOVE_TO {Quantity: 600}]->(C01)
CREATE (B03)-[:MOVE_TO {Quantity: 100}]->(C02)
CREATE (B04)-[:MOVE_TO {Quantity: 200}]->(C02)

CREATE (C01)-[:MOVE_TO {Quantity: 500}]->(D01)
CREATE (C02)-[:MOVE_TO {Quantity: 200}]->(D01)

当前查询是这样的:

MATCH (s:Store { Name:'D01' })
MATCH (s)<-[t:MOVE_TO]-()<-[r:MOVE_TO]-(supp)
WITH t.Quantity as total, collect(r) as movements
WITH total, movements, reduce(totalSupplier = 0, r IN movements | totalSupplier + r.Quantity) as supCount
UNWIND movements as movement
RETURN startNode(movement).Supplier as Supplier, round(100.0*movement.Quantity/supCount) as pct

我正在尝试使用递归关系,大致如下:

MATCH (s)<-[t:MOVE_TO]-()<-[r:MOVE_TO*]-(supp)

然而,这提供了到末端节点的多条路径,我需要在我认为的每个节点汇总库存。

我想不出用纯密码解决方案的方法,因为我认为你不能用密码进行这样的递归。但是,您可以使用 cypher 以简单的方式 return 树中的所有数据,以便您可以用自己喜欢的编程语言对其进行计算。像这样:

MATCH path=(source:Store)-[move:MOVE_TO*]->(target:Store {Name: 'D01'})
WHERE source.Supplier IS NOT NULL
RETURN
  source.Supplier,
  reduce(a=[], move IN relationships(path)| a + [{id: ID(move), Quantity: move.Quantity}])

这将为您 return 您提供每个路径上每个关系的 ID 和数量。然后您可以处理该客户端(也许首先将其转换为嵌套数据结构?)

正如我之前所说,我很喜欢这个问题。我知道你已经接受了一个答案,但我决定 post 我的最终回应,因为它也 returns 百分位数而无需客户端的努力(这意味着你也可以在节点上执行 SET 以更新中的值数据库,当你需要时),当然,如果出于任何其他原因,我可以回来 :) 这是 link 到 console example

它returns一行包含商店名称,从所有供应商转移到它的总和以及每个供应商的百分位数

MATCH p =s<-[:MOVE_TO*]-sup
WHERE HAS (sup.Supplier) AND NOT HAS (s.Supplier)
WITH s,sup,reduce(totalSupplier = 0, r IN relationships(p)| totalSupplier + r.Quantity) AS TotalAmountMoved
WITH sum(TotalAmountMoved) AS sumMoved, collect(DISTINCT ([sup.Supplier, TotalAmountMoved])) AS MyDataPart1,s
WITH reduce(b=[], c IN MyDataPart1| b +[{ Supplier: c[0], Quantity: c[1], Percentile: ((c[1]*1.00))/(sumMoved*1.00)*100.00 }]) AS MyData, s, sumMoved
RETURN s.Name, sumMoved, MyData

此查询为符合问题中描述的模型的任意图形生成正确的结果。 (当 Store x 将商品移动到 Store y 时,假定移动商品的 Supplier 百分比与 Store x 相同。)

但是,此解决方案不仅仅包含单个 Cypher 查询(因为这可能是不可能的)。相反,它涉及多个查询,必须迭代其中一个查询,直到计算级联通过 Store 个节点的整个图。该迭代查询会清楚地告诉您何时停止迭代。其他 Cypher 查询需要:为迭代准备图,报告 "end" 节点的供应商百分比,并清理图(以便它恢复到步骤 1 之前的状态,下面)。

这些查询或许可以进一步优化。

这是必需的步骤:

  1. 为迭代查询准备图(为所有起始 Store 节点初始化临时 pcts 数组)。这包括创建一个单例 Suppliers 节点,该节点具有包含所有供应商名称的数组。这用于建立临时 pcts 数组元素的顺序,并将这些元素映射回正确的供应商名称。

    MATCH (store:Store)
    WHERE HAS (store.Supplier)
    WITH COLLECT(store) AS stores, COLLECT(DISTINCT store.Supplier) AS csup
    CREATE (sups:Suppliers { names: csup })
    WITH stores, sups
    UNWIND stores AS store
    SET store.pcts =
      EXTRACT(i IN RANGE(0,LENGTH(sups.names)-1,1) |
        CASE WHEN store.Supplier = sups.names[i] THEN 1.0 ELSE 0.0 END)
    RETURN store.Name, store.Supplier, store.pcts;
    

    这是问题数据的结果:

    +---------------------------------------------+
    | store.Name | store.Supplier | store.pcts    |
    +---------------------------------------------+
    | "A01"      | "S1"           | [1.0,0.0,0.0] |
    | "A02"      | "S1"           | [1.0,0.0,0.0] |
    | "A03"      | "S2"           | [0.0,1.0,0.0] |
    | "A04"      | "S3"           | [0.0,0.0,1.0] |
    | "A05"      | "S1"           | [1.0,0.0,0.0] |
    | "A06"      | "S1"           | [1.0,0.0,0.0] |
    | "A07"      | "S2"           | [0.0,1.0,0.0] |
    | "A08"      | "S3"           | [0.0,0.0,1.0] |
    +---------------------------------------------+
    8 rows
    83 ms
    Nodes created: 1
    Properties set: 9
    
  2. 迭代查询(运行重复直到返回0行)

    MATCH p=(s1:Store)-[m:MOVE_TO]->(s2:Store)
    WHERE HAS(s1.pcts) AND NOT HAS(s2.pcts)
    SET s2.pcts = EXTRACT(i IN RANGE(1,LENGTH(s1.pcts),1) | 0)
    WITH s2, COLLECT(p) AS ps
    WITH s2, ps, REDUCE(s=0, p IN ps | s + HEAD(RELATIONSHIPS(p)).Quantity) AS total
    FOREACH(p IN ps |
      SET HEAD(RELATIONSHIPS(p)).pcts = EXTRACT(parentPct IN HEAD(NODES(p)).pcts | parentPct * HEAD(RELATIONSHIPS(p)).Quantity / total)
    )
    FOREACH(p IN ps |
      SET s2.pcts = EXTRACT(i IN RANGE(0,LENGTH(s2.pcts)-1,1) | s2.pcts[i] + HEAD(RELATIONSHIPS(p)).pcts[i])
    )
    RETURN s2.Name, s2.pcts, total, EXTRACT(p IN ps | HEAD(RELATIONSHIPS(p)).pcts) AS rel_pcts;
    

    迭代 1 结果:

    +-----------------------------------------------------------------------------------------------+
    | s2.Name | s2.pcts       | total | rel_pcts                                                    |
    +-----------------------------------------------------------------------------------------------+
    | "B04"   | [0.0,0.1,0.9] | 500   | [[0.0,0.1,0.0],[0.0,0.0,0.9]]                               |
    | "B01"   | [1.0,0.0,0.0] | 1250  | [[0.6,0.0,0.0],[0.4,0.0,0.0]]                               |
    | "B03"   | [1.0,0.0,0.0] | 300   | [[0.3333333333333333,0.0,0.0],[0.6666666666666666,0.0,0.0]] |
    | "B02"   | [0.0,0.6,0.4] | 1250  | [[0.0,0.6,0.0],[0.0,0.0,0.4]]                               |
    +-----------------------------------------------------------------------------------------------+
    4 rows
    288 ms
    Properties set: 24
    

    迭代 2 结果:

    +-------------------------------------------------------------------------------------------------------------------------------+
    | s2.Name | s2.pcts                                      | total | rel_pcts                                                     |
    +-------------------------------------------------------------------------------------------------------------------------------+
    | "C02"   | [0.3333333333333333,0.06666666666666667,0.6] | 300   | [[0.3333333333333333,0.0,0.0],[0.0,0.06666666666666667,0.6]] |
    | "C01"   | [0.4,0.36,0.24]                              | 1000  | [[0.4,0.0,0.0],[0.0,0.36,0.24]]                              |
    +-------------------------------------------------------------------------------------------------------------------------------+
    2 rows
    193 ms
    Properties set: 12
    

    迭代 3 结果:

    +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    | s2.Name | s2.pcts                                                       | total | rel_pcts                                                                                                                    |
    +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    | "D01"   | [0.38095238095238093,0.27619047619047615,0.34285714285714286] | 700   | [[0.2857142857142857,0.2571428571428571,0.17142857142857143],[0.09523809523809522,0.01904761904761905,0.17142857142857143]] |
    +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    1 row
    40 ms
    Properties set: 6
    

    迭代 4 结果:

    +--------------------------------------+
    | s2.Name | s2.pcts | total | rel_pcts |
    +--------------------------------------+
    +--------------------------------------+
    0 rows
    69 ms
    
  3. 列出结束 Store 个节点的非零 Supplier 百分比。

    MATCH (store:Store), (sups:Suppliers)
    WHERE NOT (store:Store)-[:MOVE_TO]->(:Store) AND HAS(store.pcts)
    RETURN store.Name, [i IN RANGE(0,LENGTH(sups.names)-1,1) WHERE store.pcts[i] > 0 | {supplier: sups.names[i], pct: store.pcts[i] * 100}] AS pcts;
    

    结果:

    +----------------------------------------------------------------------------------------------------------------------------------+
    | store.Name | pcts                                                                                                                |
    +----------------------------------------------------------------------------------------------------------------------------------+
    | "D01"      | [{supplier=S1, pct=38.095238095238095},{supplier=S2, pct=27.619047619047617},{supplier=S3, pct=34.285714285714285}] |
    +----------------------------------------------------------------------------------------------------------------------------------+
    1 row
    293 ms
    
  4. 清理(删除所有临时 pcts 道具和 Suppliers 节点)。

    MATCH (s:Store), (sups:Suppliers)
    OPTIONAL MATCH (s)-[m:MOVE_TO]-()
    REMOVE m.pcts, s.pcts
    DELETE sups;
    

    结果:

    0 rows
    203 ms
    +-------------------+
    | No data returned. |
    +-------------------+
    Properties set: 29
    Nodes deleted: 1