PyFlink - Scala UDF - 如何在 Table API 中转换 Scala Map?

PyFlink - Scala UDF - How to convert Scala Map in Table API?

我正在尝试将我的 Scala UDF (scala.collection.immutable.map) 的 Map[String,String] 对象输出映射到 Table API 中的某个有效数据类型,即通过Java 按照此处的建议键入 (java.util.Map):。但是我得到以下错误。

知道正确的处理方法吗?如果是,是否有一种方法可以将转换概括为 Map[String,Any] 类型的(嵌套)Scala 对象?

代码

Scala UDF

class dummyMap() extends ScalarFunction {
  def eval() = {
    val whatevermap = Map("key1" -> "val1", "key2" -> "val2")
    whatevermap.asInstanceOf[java.util.Map[java.lang.String,java.lang.String]]
  }
}

下沉

my_sink_ddl = f"""
    create table mySink (
        output_of_dummyMap_udf MAP<STRING,STRING>
    ) with (
        ...
    )
"""

错误

Py4JJavaError: An error occurred while calling o430.execute.
: org.apache.flink.table.api.ValidationException: Field types of query result and registered TableSink `default_catalog`.`default_database`.`mySink` do not match.
Query result schema: [output_of_my_scala_udf: GenericType<java.util.Map>]
TableSink schema:    [output_of_my_scala_udf: Map<String, String>]

谢谢!

来自 Wei Zhong 的原始答案。 我只是记者谢谢小薇!

此时(Flink 1.11),有两种方法在起作用:

  • 当前:UDF 定义中的 DataTypeHint + SQL 用于 UDF 注册
  • 已过时:覆盖 UDF 定义中的 getResultType + t_env.register_java_function 用于 UDF 注册

代码

Scala UDF

package com.dummy

import org.apache.flink.api.common.typeinfo.TypeInformation
import org.apache.flink.table.annotation.DataTypeHint
import org.apache.flink.table.api.Types
import org.apache.flink.table.functions.ScalarFunction
import org.apache.flink.types.Row

class dummyMap extends ScalarFunction {

  // If the udf would be registered by the SQL statement, you need add this typehint
  @DataTypeHint("ROW<s STRING,t STRING>")
  def eval(): Row = {

    Row.of(java.lang.String.valueOf("foo"), java.lang.String.valueOf("bar"))

  }

  // If the udf would be registered by the method 'register_java_function', you need override this
  // method.
  override def getResultType(signature: Array[Class[_]]): TypeInformation[_] = {
    // The type of the return values should be TypeInformation
    Types.ROW(Array("s", "t"), Array[TypeInformation[_]](Types.STRING(), Types.STRING()))
  }
}

Python代码

from pyflink.datastream import StreamExecutionEnvironment
from pyflink.table import StreamTableEnvironment

s_env = StreamExecutionEnvironment.get_execution_environment()
st_env = StreamTableEnvironment.create(s_env)

# load the scala udf jar file, the path should be modified to yours
# or your can also load the jar file via other approaches
st_env.get_config().get_configuration().set_string("pipeline.jars", "file:///Users/zhongwei/the-dummy-udf.jar")

# register the udf via 
st_env.execute_sql("CREATE FUNCTION dummyMap AS 'com.dummy.dummyMap' LANGUAGE SCALA")
# or register via the method
# st_env.register_java_function("dummyMap", "com.dummy.dummyMap")

# prepare source and sink
t = st_env.from_elements([(1, 'hi', 'hello'), (2, 'hi', 'hello')], ['a', 'b', 'c'])
st_env.execute_sql("""create table mySink (
        output_of_my_scala_udf ROW<s STRING,t STRING>
    ) with (
        'connector' = 'print'
    )""")

# execute query
t.select("dummyMap()").execute_insert("mySink").get_job_client().get_job_execution_result().result()