如果与列表匹配,则重新移动 Nan 值列数据框

Reshift Nan values column dataframe if match with list

我想重新排列包含 Nan 的列名称值。

我想要的条件是,如果列表中的字符串与列 [1] 匹配,它只会重新移动包含匹配字符串下的行的列值,因此它是我移动前的数据框。

[in] : df
[Out]:

   column1     column2    column3 
0  aba abab    800.0      900.0
1  aaa acc     900.0      60.0 
2  bba jka     809.0      400.0
3  fff yy      521.0      490.0  
4  hkm asa j   290.0      321.0    
5  daa rr oo   88.0       Nan
6  jtuy ww ddw Nan        600.0
8  bkam ftf    Nan        Nan   
9  fgqefc      Nan        Nan
10 daas we fg  Nan        Nan   
11 judv mm mk  Nan        Nan   
12 hus gg hhh  Nan        Nan 

这是我的列表

my_list= ['bba jka', 'hkm asa j']

所以这是我想要的数据框,名称是 df1

column1     column2    column3 
0  aba abab    800.0      900.0
1  aaa acc     900.0      60.0 
2  bba jka     Nan        Nan
3  fff yy      809.0      400.0  
4  hkm asa j   Nan        Nan    
5  daa rr oo   521.0      490.0
6  jtuy ww ddw 290.0      321.0
8  bkam ftf    88.0       Nan   
9  fgqefc      Nan        600.0
10 daas we fg  Nan        Nan   
11 judv mm mk  Nan        Nan   
12 hus gg hhh  Nan        Nan 

不知道df1怎么用shift和match实现,谁能解决?

这是一个可能不是最佳的建议:

步骤 1apply 的准备工作:

match = df['column1'].str.fullmatch('|'.join(entry for entry in my_list))
df['shift'] = match.cumsum()
df['index'] = df.index
df.set_index('column1', drop=True, inplace=True)

结果 (df) 看起来像:

            column2 column3  shift  index
column1                                  
aba abab      800.0   900.0      0      0
aaa acc       900.0    60.0      0      1
bba jka       809.0   400.0      1      2
fff yy        521.0   490.0      1      3
hkm asa j     290.0   321.0      2      4
daa rr oo      88.0     NaN      2      5
...

第 2 步:通过 applyNaN 通过掩码 match:

分配的“移位”
df = df.apply(lambda row: df.shift(int(row.at['shift'])).iloc[int(row.at['index'])],
              axis='columns')
df[list(match)] = np.nan

步骤 3:清理:

df.drop(['shift', 'index'], axis='columns', inplace=True)
df.reset_index(inplace=True)

结果如期而至:

        column1 column2 column3
0      aba abab   800.0   900.0
1       aaa acc   900.0    60.0
2       bba jka     NaN     NaN
3        fff yy   809.0   400.0
4     hkm asa j     NaN     NaN
5     daa rr oo   521.0   490.0
6   jtuy ww ddw   290.0   321.0
7      bkam ftf    88.0     NaN
8        fgqefc     NaN   600.0
9    daas we fg     NaN     NaN
10   judv mm mk     NaN     NaN
11   hus gg hhh     NaN     NaN

但我不喜欢在 apply 中使用 df.shift。问题是 第一行 中的可能匹配会导致没有 shift 的错误结果。这是一个避免这个问题的版本,在 apply:

中更直接
# Preparation
df = pd.concat(
        [pd.DataFrame({col: ['NOT IN LIST' if i == 0 else np.nan]
                       for i, col in enumerate(df.columns)}), df],
        axis='index', 
        ignore_index=True
    )
match = df['column1'].str.fullmatch('|'.join(entry for entry in my_list))
df['shift'] = df.index - match.cumsum()
df.set_index('column1', drop=True, inplace=True)

# Shifting etc.
df = df.apply(lambda row: df.iloc[int(row.at['shift'])], axis='columns')
df[list(match)] = np.nan

# Clean up
df.drop('NOT IN LIST', axis='index', inplace=True)
df.drop('shift', axis='columns', inplace=True)
df.reset_index(inplace=True)

(这里假设字符串 'NOT IN LIST' 不在 my_list 中。很可能空字符串 '' 也是一个不错的选择。)