`match goal` 不匹配 let 解构表达式
`match goal` doesn't match let destructuring expression
我正在尝试证明一个涉及使用解构 let
表达式的函数的定理,并且正在尝试使用 match goal
策略来破坏右侧,但出于某种原因模式与我期望的不匹配:
match goal with
(* why doesn't this match? *)
| [ |- context[let _ := ?X in _] ] => destruct X
end.
如果您有 Certified Programming with Dependent Types 的 Cpdt
(我非常喜欢他的自动化风格),这里有一个应该可以运行的代码片段。
我找到了一个证明,但我正计划证明更多具有相似形状的定理,并且我希望有一种能够证明其中许多定理的自动化策略。
Set Implicit Arguments. Set Asymmetric Patterns.
Require Import List Cpdt.CpdtTactics.
Import ListNotations.
Section PairList.
Variable K V: Set.
Variable K_eq_dec: forall x y: K, {x = y} + {x <> y}.
Variable V_eq_dec: forall x y: V, {x = y} + {x <> y}.
Definition Pair: Type := (K * V).
Definition PairList := list Pair.
(* ... *)
Fixpoint set (l: PairList) (key: K) (value: V): PairList :=
match l with
| [] => [(key, value)]
| pr::l' => let (k, _) := pr in
if K_eq_dec key k then (key, value)::l' else pr::(set l' key value)
end.
Theorem set_NotEmpty: forall (before after: PairList) key value,
after = set before key value -> after <> [].
Proof.
intros before after. induction before.
- crush.
- intros. rewrite -> H. simpl.
(* the context at this step:
1 subgoal
K, V : Set
K_eq_dec : ...
V_eq_dec : ...
a : Pair
before : list Pair
after : PairList
IHbefore: ...
key : K
value : V
H : ...
============================
(let (k, _) := a in
if K_eq_dec key k
then (key, value) :: before
else
a :: set before key value) <> []
*)
(* a successful proof
destruct a.
destruct (K_eq_dec key k); crush.
*)
match goal with
(* why doesn't this match? *)
| [ |- context[let _ := ?X in _] ] => destruct X
| [ |- context[(() <> [])] ] => idtac X
end.
(* the above command prints this:
(let (k, _) := a in
if K_eq_dec key k
then (key, value) :: before
else
a :: set before key value)
*)
Qed.
End PairList.
解构let实际上是匹配的,所以你需要寻找一个match
。当策略不匹配时,您可以看到目标中的所有表达式都用 Set Printing All.
脱糖
match goal with
| [ |- context[let _ := ?X in _] ] => destruct X
(* ADD THIS LINE *)
| [ |- context[match ?X with _ => _ end]] => destruct X
| [ |- context[(() <> [])] ] => idtac X
end.
我正在尝试证明一个涉及使用解构 let
表达式的函数的定理,并且正在尝试使用 match goal
策略来破坏右侧,但出于某种原因模式与我期望的不匹配:
match goal with
(* why doesn't this match? *)
| [ |- context[let _ := ?X in _] ] => destruct X
end.
如果您有 Certified Programming with Dependent Types 的 Cpdt
(我非常喜欢他的自动化风格),这里有一个应该可以运行的代码片段。
我找到了一个证明,但我正计划证明更多具有相似形状的定理,并且我希望有一种能够证明其中许多定理的自动化策略。
Set Implicit Arguments. Set Asymmetric Patterns.
Require Import List Cpdt.CpdtTactics.
Import ListNotations.
Section PairList.
Variable K V: Set.
Variable K_eq_dec: forall x y: K, {x = y} + {x <> y}.
Variable V_eq_dec: forall x y: V, {x = y} + {x <> y}.
Definition Pair: Type := (K * V).
Definition PairList := list Pair.
(* ... *)
Fixpoint set (l: PairList) (key: K) (value: V): PairList :=
match l with
| [] => [(key, value)]
| pr::l' => let (k, _) := pr in
if K_eq_dec key k then (key, value)::l' else pr::(set l' key value)
end.
Theorem set_NotEmpty: forall (before after: PairList) key value,
after = set before key value -> after <> [].
Proof.
intros before after. induction before.
- crush.
- intros. rewrite -> H. simpl.
(* the context at this step:
1 subgoal
K, V : Set
K_eq_dec : ...
V_eq_dec : ...
a : Pair
before : list Pair
after : PairList
IHbefore: ...
key : K
value : V
H : ...
============================
(let (k, _) := a in
if K_eq_dec key k
then (key, value) :: before
else
a :: set before key value) <> []
*)
(* a successful proof
destruct a.
destruct (K_eq_dec key k); crush.
*)
match goal with
(* why doesn't this match? *)
| [ |- context[let _ := ?X in _] ] => destruct X
| [ |- context[(() <> [])] ] => idtac X
end.
(* the above command prints this:
(let (k, _) := a in
if K_eq_dec key k
then (key, value) :: before
else
a :: set before key value)
*)
Qed.
End PairList.
解构let实际上是匹配的,所以你需要寻找一个match
。当策略不匹配时,您可以看到目标中的所有表达式都用 Set Printing All.
match goal with
| [ |- context[let _ := ?X in _] ] => destruct X
(* ADD THIS LINE *)
| [ |- context[match ?X with _ => _ end]] => destruct X
| [ |- context[(() <> [])] ] => idtac X
end.