无法在keras中使用landmarks_classifier_oceania模型来检测希格斯玻色子粒子?

Unable to use landmarks_classifier_oceania model in keras to detect Higgs Boson particles?

我试图查看是否可以使用迁移学习检测 Higgs Boson,但我无法理解错误消息。 我想知道这是否与所提到的模型是为计算机视觉设计的事实有关,所以它只适用于此(我不认为是这种情况,但任何输入都值得赞赏) 这是代码和错误信息

import tensorflow.compat.v2 as tf
import tensorflow_hub as hub

m = hub.KerasLayer('https://tfhub.dev/google/on_device_vision/classifier/landmarks_classifier_oceania_antarctica_V1/1')
m = tf.keras.Sequential([
    m,
    tf.keras.layers.Dense(2, activation='softmax'),
])


m.compile(loss = 'binary_crossentropy',  
   optimizer = 'adam', metrics = ['accuracy','binary_accuracy'])
history = m.fit(ds_train,validation_data=ds_valid, epochs =12 ,steps_per_epoch=13)

错误:

ValueError                                Traceback (most recent call last)
<ipython-input-20-0c5a3b4a3d55> in <module>
     11 m.compile(loss = 'binary_crossentropy',  
     12    optimizer = 'adam', metrics = ['accuracy','binary_accuracy'])
---> 13 history = m.fit(ds_train,validation_data=ds_valid, epochs =12 ,steps_per_epoch=13)

/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py in _method_wrapper(self, *args, **kwargs)
     64   def _method_wrapper(self, *args, **kwargs):
     65     if not self._in_multi_worker_mode():  # pylint: disable=protected-access
---> 66       return method(self, *args, **kwargs)
     67 
     68     # Running inside `run_distribute_coordinator` already.

/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
    846                 batch_size=batch_size):
    847               callbacks.on_train_batch_begin(step)
--> 848               tmp_logs = train_function(iterator)
    849               # Catch OutOfRangeError for Datasets of unknown size.
    850               # This blocks until the batch has finished executing.

/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds)
    578         xla_context.Exit()
    579     else:
--> 580       result = self._call(*args, **kwds)
    581 
    582     if tracing_count == self._get_tracing_count():

/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds)
    625       # This is the first call of __call__, so we have to initialize.
    626       initializers = []
--> 627       self._initialize(args, kwds, add_initializers_to=initializers)
    628     finally:
    629       # At this point we know that the initialization is complete (or less

/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in _initialize(self, args, kwds, add_initializers_to)
    504     self._concrete_stateful_fn = (
    505         self._stateful_fn._get_concrete_function_internal_garbage_collected(  # pylint: disable=protected-access
--> 506             *args, **kwds))
    507 
    508     def invalid_creator_scope(*unused_args, **unused_kwds):

/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
   2444       args, kwargs = None, None
   2445     with self._lock:
-> 2446       graph_function, _, _ = self._maybe_define_function(args, kwargs)
   2447     return graph_function
   2448 

/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs)
   2775 
   2776       self._function_cache.missed.add(call_context_key)
-> 2777       graph_function = self._create_graph_function(args, kwargs)
   2778       self._function_cache.primary[cache_key] = graph_function
   2779       return graph_function, args, kwargs

/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
   2665             arg_names=arg_names,
   2666             override_flat_arg_shapes=override_flat_arg_shapes,
-> 2667             capture_by_value=self._capture_by_value),
   2668         self._function_attributes,
   2669         # Tell the ConcreteFunction to clean up its graph once it goes out of

/opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
    979         _, original_func = tf_decorator.unwrap(python_func)
    980 
--> 981       func_outputs = python_func(*func_args, **func_kwargs)
    982 
    983       # invariant: `func_outputs` contains only Tensors, CompositeTensors,

/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds)
    439         # __wrapped__ allows AutoGraph to swap in a converted function. We give
    440         # the function a weak reference to itself to avoid a reference cycle.
--> 441         return weak_wrapped_fn().__wrapped__(*args, **kwds)
    442     weak_wrapped_fn = weakref.ref(wrapped_fn)
    443 

/opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
    966           except Exception as e:  # pylint:disable=broad-except
    967             if hasattr(e, "ag_error_metadata"):
--> 968               raise e.ag_error_metadata.to_exception(e)
    969             else:
    970               raise

ValueError: in user code:

    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py:571 train_function  *
        outputs = self.distribute_strategy.run(
    /opt/conda/lib/python3.7/site-packages/tensorflow_hub/keras_layer.py:222 call  *
        result = f()
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py:1605 __call__  **
        return self._call_impl(args, kwargs)
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py:1645 _call_impl
        return self._call_flat(args, self.captured_inputs, cancellation_manager)
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py:1730 _call_flat
        arg.shape))

    ValueError: The argument 'images' (value Tensor("IteratorGetNext:0", shape=(None, 28), dtype=float32, device=/job:worker/replica:0/task:0/device:CPU:0)) is not compatible with the shape this function was traced with. Expected shape (None, 321, 321, 3), but got shape (None, 28).
    
    If you called get_concrete_function, you may need to pass a tf.TensorSpec(..., shape=...) with a less specific shape, having None on axes which can vary.

感谢任何努力 非常感谢

根据 Land Marks Classifier 的官方文档,

Inputs are expected to be 3-channel RGB color images of size 321 x 321, scaled to [0, 1].

但是从Your Dataset开始,文件格式是tfrecord.

当我们使用 Transfer Learning 并且我们想重用来自 TF Hubtf.keras.applicationsModels 时,我们的数据应该在 predefined-format 如文档中所述。

因此,请确保您的 DatasetImages 组成,并将 Image Array 大小调整为 (321,321,3) 以使 TF Hub Module 正常工作。