使用 pandas 根据列查找两个数据帧之间的公共行

Finding common rows between two dataframes based on a column using pandas

我有两个数据框。我需要根据列 'a' 中的公共值提取行。但是,我不想在最后创建一个数据框,而是想保留两个数据框。

例如:

###Consider the following input
df1 = pd.DataFrame({'a':[0,1,1,2,3,4], 'b':['q','r','s','t','u','v'],'c':['a','b','c','d','e','f']})

df2 = pd.DataFrame({'a':[1,4,5,6], 'b':['qq','rr','ss','tt'],'c':[1,2,3,4]})

预期输出为:


###df1:
      a.      b.     c
0.    1.      r.     a
1.    1.      s.     c 
2.    4.      v.     f


###df2:
      a.      b.     c
0.    1.      qq     1
1.    4.      rr     2


我怎样才能达到下面的结果?将不胜感激。

df1 = df1[df1['a'].isin(df2['a'])].reset_index(drop=True)
df2 = df2[df2['a'].isin(df1['a'])].reset_index(drop=True)

你可以用 numpy 的 intersect1d

概括它
import numpy as np

intersection_arr = np.intersect1d(df1['a'], df2['a'])

df1 = df1.loc[df1['a'].isin(intersection_arr),:]
df2 = df2.loc[df2['a'].isin(intersection_arr),:]

超过两个数据帧:

import numpy as np
from functools import reduce

intersection_arr = reduce(np.intersect1d, (df1['a'], df2['a'], df3['a']))

df1 = df1.loc[df1['a'].isin(intersection_arr),:]
df2 = df2.loc[df2['a'].isin(intersection_arr),:]
df3 = df3.loc[df3['a'].isin(intersection_arr),:]