使用自动编码器在每个时期中传递到隐藏层后检索输入值
Retrieve input values after passing to hidden layer in every epoch by using autoencoder
我想在每个时期都传递到隐藏层后检索输入值。我使用自动编码器从输入 (iris.csv) 训练数据。在下面的代码中,我不知道如何干预 fit() 函数并获取数据值。谢谢!
data = pd.read_csv("data/iris.csv")
x_train, x_test, y_train, y_test = train_test_split(data[['SepalLengthCm', 'SepalWidthCm',
'PetalLengthCm', 'PetalWidthCm']],
data['Species'], test_size=0.1, random_state=1)
input_img = Input(shape=(input_dim,))
# "encoded" is the encoded representation of the input
encoded = Dense(encoding_dim)(input_img)
# "decoded" is the lossy reconstruction of the input
decoded = Dense(input_dim)(encoded)
# this model maps an input to its reconstruction
autoencoder = Model(input_img, decoded)
# this model maps an input to its encoded representation
encoder = Model(input_img, encoded)
# create a placeholder for an encoded (2-dimensional) input
encoded_input = Input(shape=(encoding_dim,))
# retrieve the last layer of the autoencoder model
decoder_layer = autoencoder.layers[-1]
# create the decoder model
decoder = Model(encoded_input, decoder_layer(encoded_input))
hidden_layer = autoencoder.layers[0] # get hidden layer values
hidden_layer_decoder = Model(encoded_input, hidden_layer(encoded_input))
autoencoder.compile(loss='mean_squared_error', optimizer='sgd')
autoencoder.fit(x_train, x_train,
epochs=500,
batch_size=135,
shuffle=True,
validation_data=(x_test, x_test),
verbose=0,
callbacks=[TensorBoard(log_dir='/tmp/autoencoder')])
# I want to get these values in every epoch -----
encoded_datapoints = encoder.predict(data[['SepalLengthCm', 'SepalWidthCm','PetalLengthCm',
'PetalWidthCm']])
decoded_datapoints = decoder.predict(encoded_datapoints)
hidden_layer_dataset = hidden_layer_decoder.predict(encoded_datapoints)
print('Hidden Datapoints :')
print(hidden_layer_dataset)
你可以把 fit 放在一个循环中
for _ in range(500):
autoencoder.fit(x_train, x_train,epochs=1,batch_size=135,
shuffle=True,validation_data=(x_test, x_test),
verbose=0,
callbacks=[TensorBoard(log_dir='/tmp/autoencoder')])
encoded_datapoints = encoder.predict(data[['SepalLengthCm','SepalWidthCm','PetalLengthCm',
'PetalWidthCm']])
decoded_datapoints = decoder.predict(encoded_datapoints)
hidden_layer_dataset = hidden_layer_decoder.predict(encoded_datapoints)
print('Hidden Datapoints :')
print(hidden_layer_dataset)
我想在每个时期都传递到隐藏层后检索输入值。我使用自动编码器从输入 (iris.csv) 训练数据。在下面的代码中,我不知道如何干预 fit() 函数并获取数据值。谢谢!
data = pd.read_csv("data/iris.csv")
x_train, x_test, y_train, y_test = train_test_split(data[['SepalLengthCm', 'SepalWidthCm',
'PetalLengthCm', 'PetalWidthCm']],
data['Species'], test_size=0.1, random_state=1)
input_img = Input(shape=(input_dim,))
# "encoded" is the encoded representation of the input
encoded = Dense(encoding_dim)(input_img)
# "decoded" is the lossy reconstruction of the input
decoded = Dense(input_dim)(encoded)
# this model maps an input to its reconstruction
autoencoder = Model(input_img, decoded)
# this model maps an input to its encoded representation
encoder = Model(input_img, encoded)
# create a placeholder for an encoded (2-dimensional) input
encoded_input = Input(shape=(encoding_dim,))
# retrieve the last layer of the autoencoder model
decoder_layer = autoencoder.layers[-1]
# create the decoder model
decoder = Model(encoded_input, decoder_layer(encoded_input))
hidden_layer = autoencoder.layers[0] # get hidden layer values
hidden_layer_decoder = Model(encoded_input, hidden_layer(encoded_input))
autoencoder.compile(loss='mean_squared_error', optimizer='sgd')
autoencoder.fit(x_train, x_train,
epochs=500,
batch_size=135,
shuffle=True,
validation_data=(x_test, x_test),
verbose=0,
callbacks=[TensorBoard(log_dir='/tmp/autoencoder')])
# I want to get these values in every epoch -----
encoded_datapoints = encoder.predict(data[['SepalLengthCm', 'SepalWidthCm','PetalLengthCm',
'PetalWidthCm']])
decoded_datapoints = decoder.predict(encoded_datapoints)
hidden_layer_dataset = hidden_layer_decoder.predict(encoded_datapoints)
print('Hidden Datapoints :')
print(hidden_layer_dataset)
你可以把 fit 放在一个循环中
for _ in range(500):
autoencoder.fit(x_train, x_train,epochs=1,batch_size=135,
shuffle=True,validation_data=(x_test, x_test),
verbose=0,
callbacks=[TensorBoard(log_dir='/tmp/autoencoder')])
encoded_datapoints = encoder.predict(data[['SepalLengthCm','SepalWidthCm','PetalLengthCm',
'PetalWidthCm']])
decoded_datapoints = decoder.predict(encoded_datapoints)
hidden_layer_dataset = hidden_layer_decoder.predict(encoded_datapoints)
print('Hidden Datapoints :')
print(hidden_layer_dataset)