使用 Python matplotlib-venn 查找相交值
Finding intersect values using Python matplotlib-venn
我一直在使用 matplotlib-venn 生成 3 组维恩图。如下所示。
我想问一下如何找到这些集合的交集的值。例如,与集合 A 和集合 B 相交的 384 个值是多少?与集合 A、集合 B 和集合 C 相交的 144 个值是多少?如此值得。
谢谢。
罗德里戈
假设你使用的是内置的Python set
对象,获取两个集合之间的交集是非常简单的。看这个例子:
>>> a = set(range(30))
>>> b = set(range(25,50))
>>> a.intersection(b)
set([25, 26, 27, 28, 29])
我知道这是一个老问题,但我最近在处理类似的问题。为了未来的访客,我在这里分享我的解决方案。下面的代码提供了一个解决方案来识别维恩图每个部分的成员资格。仅有交叉点是不够的,您还必须减去不需要的集合。
def get_venn_sections(sets):
"""
Given a list of sets, return a new list of sets with all the possible
mutually exclusive overlapping combinations of those sets. Another way
to think of this is the mutually exclusive sections of a venn diagram
of the sets. If the original list has N sets, the returned list will
have (2**N)-1 sets.
Parameters
----------
sets : list of set
Returns
-------
combinations : list of tuple
tag : str
Binary string representing which sets are included / excluded in
the combination.
set : set
The set formed by the overlapping input sets.
"""
num_combinations = 2 ** len(sets)
bit_flags = [2 ** n for n in range(len(sets))]
flags_zip_sets = [z for z in zip(bit_flags, sets)]
combo_sets = []
for bits in range(num_combinations - 1, 0, -1):
include_sets = [s for flag, s in flags_zip_sets if bits & flag]
exclude_sets = [s for flag, s in flags_zip_sets if not bits & flag]
combo = set.intersection(*include_sets)
combo = set.difference(combo, *exclude_sets)
tag = ''.join([str(int((bits & flag) > 0)) for flag in bit_flags])
combo_sets.append((tag, combo))
return combo_sets
我一直在使用 matplotlib-venn 生成 3 组维恩图。如下所示。
我想问一下如何找到这些集合的交集的值。例如,与集合 A 和集合 B 相交的 384 个值是多少?与集合 A、集合 B 和集合 C 相交的 144 个值是多少?如此值得。
谢谢。
罗德里戈
假设你使用的是内置的Python set
对象,获取两个集合之间的交集是非常简单的。看这个例子:
>>> a = set(range(30))
>>> b = set(range(25,50))
>>> a.intersection(b)
set([25, 26, 27, 28, 29])
我知道这是一个老问题,但我最近在处理类似的问题。为了未来的访客,我在这里分享我的解决方案。下面的代码提供了一个解决方案来识别维恩图每个部分的成员资格。仅有交叉点是不够的,您还必须减去不需要的集合。
def get_venn_sections(sets):
"""
Given a list of sets, return a new list of sets with all the possible
mutually exclusive overlapping combinations of those sets. Another way
to think of this is the mutually exclusive sections of a venn diagram
of the sets. If the original list has N sets, the returned list will
have (2**N)-1 sets.
Parameters
----------
sets : list of set
Returns
-------
combinations : list of tuple
tag : str
Binary string representing which sets are included / excluded in
the combination.
set : set
The set formed by the overlapping input sets.
"""
num_combinations = 2 ** len(sets)
bit_flags = [2 ** n for n in range(len(sets))]
flags_zip_sets = [z for z in zip(bit_flags, sets)]
combo_sets = []
for bits in range(num_combinations - 1, 0, -1):
include_sets = [s for flag, s in flags_zip_sets if bits & flag]
exclude_sets = [s for flag, s in flags_zip_sets if not bits & flag]
combo = set.intersection(*include_sets)
combo = set.difference(combo, *exclude_sets)
tag = ''.join([str(int((bits & flag) > 0)) for flag in bit_flags])
combo_sets.append((tag, combo))
return combo_sets