使用 R 构建决策树时如何解决
How to resolve when I build decision tree using R
我使用 R 构建了一个决策树模型,我想在预测值大于 50% 时向树中添加一个新列并在此列中打印是
N.B:数据集中的目标 coulmun 是布尔值 1 = 心脏病和 0 = 正常
library(rpart)
tree<-rpart(target ~ .,method ='class', data=train)
print(summary(tree))
tree.preds<-predict(tree,test)
print(head(tree.preds))
tree.preds<-as.data.frame(tree.preds)
joiner<-function(x){
if(x>=0.5)
return('yes')
else
return('no')
}
tree.preds$disease<-sapply(tree.preds$yes,joiner)
print(head(tree.preds))
此错误出现在运行之后:
Error in `$<-.data.frame`(`*tmp*`, t, value = list()) :
replacement has 0 rows, data has 91
您可以使用 ifelse
代替 sapply
的迭代:
library(rpart)
dat = iris[,-5]
dat$target = as.numeric(iris$Species=="versicolor")
idx = sample(nrow(dat),100)
train = dat[idx,]
test = dat[-idx,]
tree = rpart(target ~ .,method ='class', data=train)
tree.preds = data.frame(predict(tree,test))
tree.preds$Species = ifelse(tree.preds[,2]>0.5,"yes","no")
我使用 R 构建了一个决策树模型,我想在预测值大于 50% 时向树中添加一个新列并在此列中打印是
N.B:数据集中的目标 coulmun 是布尔值 1 = 心脏病和 0 = 正常
library(rpart)
tree<-rpart(target ~ .,method ='class', data=train)
print(summary(tree))
tree.preds<-predict(tree,test)
print(head(tree.preds))
tree.preds<-as.data.frame(tree.preds)
joiner<-function(x){
if(x>=0.5)
return('yes')
else
return('no')
}
tree.preds$disease<-sapply(tree.preds$yes,joiner)
print(head(tree.preds))
此错误出现在运行之后:
Error in `$<-.data.frame`(`*tmp*`, t, value = list()) :
replacement has 0 rows, data has 91
您可以使用 ifelse
代替 sapply
的迭代:
library(rpart)
dat = iris[,-5]
dat$target = as.numeric(iris$Species=="versicolor")
idx = sample(nrow(dat),100)
train = dat[idx,]
test = dat[-idx,]
tree = rpart(target ~ .,method ='class', data=train)
tree.preds = data.frame(predict(tree,test))
tree.preds$Species = ifelse(tree.preds[,2]>0.5,"yes","no")