Pyspark writing data from databricks into azure sql: ValueError: Some of types cannot be determined after inferring

Pyspark writing data from databricks into azure sql: ValueError: Some of types cannot be determined after inferring

我正在使用 pyspark 将数据从 azure databricks 写入 azure sql。 代码运行良好,没有空值,但是当数据框包含空值时,我得到以下错误:

databricks/spark/python/pyspark/sql/pandas/conversion.py:300: UserWarning: createDataFrame attempted Arrow optimization because 'spark.sql.execution.arrow.pyspark.enabled' is set to true; however, failed by the reason below:
  Unable to convert the field Product. If this column is not necessary, you may consider dropping it or converting to primitive type before the conversion.
Context: Unsupported type in conversion from Arrow: null
Attempting non-optimization as 'spark.sql.execution.arrow.pyspark.fallback.enabled' is set to true.
  warnings.warn(msg)

ValueError: Some of types cannot be determined after inferring

数据帧必须写入 sql,包括空值。我该如何解决?

sqlContext = SQLContext(sc)

def to_sql(df, table):
  finaldf = sqlContext.createDataFrame(df)
  finaldf.write.jdbc(url=url, table= table, mode ="overwrite", properties = properties)

 to_sql(data, f"TF_{table.upper()}")

编辑:

解决它创建一个函数,将 pandas dtypes 映射到 sql dtypes 并将列和 dtypes 作为一个字符串输出。

def convert_dtype(df):
    df_mssql = {'int64': 'bigint', 'object': 'varchar(200)', 'float64': 'float'}
    mydict = {}
    for col in df.columns:
        if str(df.dtypes[col]) in df_mssql:
            mydict[col] = df_mssql.get(str(df.dtypes[col]))
    l = " ".join([str(k[0] + " " + k[1] + ",") for k in list(mydict.items())])
    return l[:-1]

将此字符串传递给 createTableColumnTypes 选项解决了这种情况

jdbcDF.write \
    .option("createTableColumnTypes", convert_dtype(df) \
    .jdbc("jdbc:postgresql:dbserver", "schema.tablename",
          properties={"user": "username", "password": "password"})

为此,您需要在写入语句中指定架构。这是文档中的示例,链接如下:

jdbcDF.write \
    .option("createTableColumnTypes", "name CHAR(64), comments VARCHAR(1024)") \
    .jdbc("jdbc:postgresql:dbserver", "schema.tablename",
          properties={"user": "username", "password": "password"})

https://spark.apache.org/docs/latest/sql-data-sources-jdbc.html