定义 k-1 簇质心 -- SKlearn KMeans

Define k-1 cluster centroids -- SKlearn KMeans

我正在对部分标记的数据集执行二元分类。我对它的 1 有一个可靠的估计,但对它的 0 没有。

来自 sklearn KMeans 文档:

init : {‘k-means++’, ‘random’ or an ndarray}
Method for initialization, defaults to ‘k-means++’:   
If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial centers.

我想传递一个 ndarray,但我只有 1 个可靠的质心,而不是 2 个。

有没有办法最大化第K-1个质心和第K个质心之间的熵?或者,有没有办法手动初始化 K-1 个质心并使用 K++ 处理剩余的质心?

=========================================== ==========

相关问题:

试图定义具有 n-1 个特征的 K 个质心。 (我想用 n 个特征定义 k-1 个质心)。

,但其中一位开发人员将其解释为错误,并且“很容易实施[能够]”

我有理由相信这会按预期工作,但如果您发现错误,请纠正我。 (从 geeks for geeks 拼凑而成):


import sys

def distance(p1, p2): 
    return np.sum((p1 - p2)**2)


def find_remaining_centroid(data, known_centroids, k = 1): 
    ''' 
    initialized the centroids for K-means++ 
    inputs: 
        data - Numpy array containing the feature space
        known_centroid - Numpy array containing the location of one or multiple known centroids
        k - remaining centroids to be found
    '''
    n_points = data.shape[0]

    # Initialize centroids list
    if known_centroids.ndim > 1:
        centroids = [cent for cent in known_centroids]
    
    else:
        centroids = [np.array(known_centroids)]

    # Perform casting if necessary
    if isinstance(data, pd.DataFrame):
        data = np.array(data)
        
    # Add a randomly selected data point to the list  
    centroids.append(data[np.random.randint( 
            n_points), :])
    
    # Compute remaining k-1 centroids
    for c_id in range(k - 1):
        ## initialize a list to store distances of data 
        ## points from nearest centroid 
        dist = np.empty(n_points)

        for i in range(n_points):
            point = data[i, :] 
            d = sys.maxsize 

            ## compute distance of 'point' from each of the previously 
            ## selected centroid and store the minimum distance 
            for j in range(len(centroids)): 
                temp_dist = distance(point, centroids[j]) 
                d = min(d, temp_dist) 

            dist[i] = d

        ## select data point with maximum distance as our next centroid 
        next_centroid = data[np.argmax(dist), :] 
        centroids.append(next_centroid) 

        # Reinitialize distance array for next centroid
        dist = np.empty(n_points)
    

    
    return centroids[-k:]

它的用法:

# For finding a third centroid:
third_centroid = find_remaining_centroid(X_train, np.array([presence_seed, absence_seed]), k = 1)

# For finding the second centroid:
second_centroid = find_remaining_centroid(X_train, presence_seed, k = 1)

其中 presence_seed 和 absence_seed 是已知的质心位置。