混淆矩阵 prediction/actual

ConfusionMatrix prediction/actual

我试图预测“是”或“不是”糖尿病。我训练了我的数据集,如下所示。之后我预测了这些值。然后我创建了一个向量并尝试使用混淆矩阵来检查灵敏度、规格和准确性。但是我总是出错。

df_fold <- train(data = df_train, Outcome~., method = "glmnet",
             family = "binomial",
             metric = "ROC",
             preProcess = c("zv", "center", "scale"),
               trControl = trainControl(
                 method = "cv", number = 10,
                 summaryFunction = twoClassSummary,
                 classProbs = TRUE,
                 verboseIter = TRUE
             ))


p <- predict.train(df_fold, df_test, type = "prob")

y_or_no <- ifelse(p > 0.8, "yes", "no")
p_yes <- factor(y_or_no, levels = levels(df_test$Outcome))

confusionMatrix.train(p_yes, df_test$Outcome, dnn = c("prediction", "actual"))

Error: $ operator is invalid for atomic vectors

我认为你是在 confusionMatrix 之后而不是 confusionMatrix.train

confusionMatrix(p_yes, df_test$Outcome, dnn = c("prediction", "actual"))

根据插入符号文档,confusionMatrix.train 用于

Using a train, rfe, sbf object, determine a confusion matrix based on the resampling procedure

confusionMatrix.train(fitted_model)