如何使用 MCMCregress 命令查找均值差异?
How to find difference in mean using MCMCregress command?
我正在尝试弄清楚如何使用 MMCCregress 找出两个分类变量的均值差异并绘制密度。
我的密码是
library(MCMCpack)
data("crabs")
out <- MCMCregress(sex~sp , data = data, family=binomial)
summary(out)
我不断收到错误消息-
Error in glm.fit(x = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, : NA/NaN/Inf in 'y'
我应该怎么做才能解决这个问题?
我注意到 sex
变量是 factor
。您可以简单地将 factor
转换为 numeric
并且您的代码将起作用。这是代码,
library(MCMCpack)
data("crabs")
out <- MCMCregress(as.numeric(sex)~sp , data = crabs, family=binomial)
summary(out)
Iterations = 1001:11000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000
1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:
Mean SD Naive SE Time-series SE
(Intercept) 1.5002783 0.05052 0.0005052 0.0005052
spO -0.0003147 0.07202 0.0007202 0.0007202
sigma2 0.2551607 0.02597 0.0002597 0.0002637
2. Quantiles for each variable:
2.5% 25% 50% 75% 97.5%
(Intercept) 1.4016 1.46639 1.5005847 1.53420 1.5996
spO -0.1433 -0.04842 -0.0009755 0.04696 0.1420
sigma2 0.2091 0.23688 0.2534471 0.27180 0.3105
我正在尝试弄清楚如何使用 MMCCregress 找出两个分类变量的均值差异并绘制密度。
我的密码是
library(MCMCpack)
data("crabs")
out <- MCMCregress(sex~sp , data = data, family=binomial)
summary(out)
我不断收到错误消息-
Error in glm.fit(x = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, : NA/NaN/Inf in 'y'
我应该怎么做才能解决这个问题?
我注意到 sex
变量是 factor
。您可以简单地将 factor
转换为 numeric
并且您的代码将起作用。这是代码,
library(MCMCpack)
data("crabs")
out <- MCMCregress(as.numeric(sex)~sp , data = crabs, family=binomial)
summary(out)
Iterations = 1001:11000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000
1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:
Mean SD Naive SE Time-series SE
(Intercept) 1.5002783 0.05052 0.0005052 0.0005052
spO -0.0003147 0.07202 0.0007202 0.0007202
sigma2 0.2551607 0.02597 0.0002597 0.0002637
2. Quantiles for each variable:
2.5% 25% 50% 75% 97.5%
(Intercept) 1.4016 1.46639 1.5005847 1.53420 1.5996
spO -0.1433 -0.04842 -0.0009755 0.04696 0.1420
sigma2 0.2091 0.23688 0.2534471 0.27180 0.3105