过采样时如何 keep/extend 索引

How to keep/extend index when oversample

我有一个这样的数据框,我想对“角色”列进行过采样(在实际情况下,rows/columns 的数量比这个最小示例大得多)

                 role  value
pop_13vdpn1_site_1  1   1
pop_13vdpn1_site_1  1   1
pop_13vdpn1_site_1  1   2
pop_13vdpn1_site_1  1   1
pop_13vdpn1_site_1  1   1
pop_13vdpn1_site_1  1   2
pop_13vdpn1_site_1  1   1
pop_13vdpn1_site_1  2   1
pop_13vdpn1_site_1  2   1
pop_13vdpn1_site_1  2   1
pop_13vdpn1_site_2  2   1
pop_13vdpn1_site_2  2   2
pop_13vdpn1_site_2  2   1
pop_13vdpn1_site_2  2   1
pop_13vdpn1_site_2  2   1
pop_13vdpn1_site_2  2   1
pop_13vdpn1_site_2  2   1
pop_13vdpn1_site_2  2   1
pop_13vdpn1_site_2  2   1
pop_13vdpn1_site_3  2   1
[...........]

Index: 20 entries, pop_13vdpn1_site_1 to pop_13vdpn1_site_1
Data columns (total 2 columns):
role     20 non-null int64
value    20 non-null int64

这就是我正在做的事情:

X,y = smote.fit_sample(df,df[['role']])
X
       role value
0   1   1
1   1   1
2   1   2
3   1   1
4   1   1
5   1   2
6   1   1
7   2   1
8   2   1
[.........]

它有效,但问题是我需要保留索引(pop_13vdpn1_site_1,等等。)这可能吗?

首先,您需要处理 df 并将特征和目标标签拆分为 X_trainy_train

现在您可以进行过采样了:

X_train_over, y_train_over = smote.fit_sample(X_train, y_train)

最后从上面的输出创建一个数据框。例如,

X = pd.DataFrame(X_train_over, columns=X_train.columns)
y = pd.DataFrame(y_train_over, columns=y_train.columns)

我终于找到了解决方法(可能不是最优的)

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df_tmp = df.reset_index()
df_tmp['index'] = le.fit_transform(df_tmp['index'])
aa,bb = smote.fit_sample(df_tmp,df_tmp[['role']])
aa['index'] = le.inverse_transform(aa['index'])
aa.set_index('index') 

下面应该做的。

import io
import pandas as pd
import numpy as np
from imblearn.over_sampling import SMOTE

示例数据。

df = pd.read_csv(io.StringIO("""
role  value
    pop_13vdpn1_site_1 1 1
    pop_13vdpn1_site_1 1 1
    pop_13vdpn1_site_1 1 2
    pop_13vdpn1_site_1 1 1
    pop_13vdpn1_site_1 1 1
    pop_13vdpn1_site_1 1 2
    pop_13vdpn1_site_1 1 1
    pop_13vdpn1_site_1 2 1
    pop_13vdpn1_site_1 2 1
    pop_13vdpn1_site_1 2 1
    pop_13vdpn1_site_2 2 1
    pop_13vdpn1_site_2 2 2
    pop_13vdpn1_site_2 2 1
    pop_13vdpn1_site_2 2 1
    pop_13vdpn1_site_2 2 1
    pop_13vdpn1_site_2 2 1
    pop_13vdpn1_site_2 2 1
    pop_13vdpn1_site_2 2 1
    pop_13vdpn1_site_2 2 1
    pop_13vdpn1_site_3 2 1
    pop_13vdpn1_site_1 1 1
    pop_13vdpn1_site_1 1 1
    pop_13vdpn1_site_1 1 2
    pop_13vdpn1_site_1 1 1
    pop_13vdpn1_site_1 1 1
    pop_13vdpn1_site_1 1 2
    pop_13vdpn1_site_1 1 1
    pop_13vdpn1_site_1 2 1
    pop_13vdpn1_site_1 2 1
    pop_13vdpn1_site_1 2 1
    pop_13vdpn1_site_2 2 1
    pop_13vdpn1_site_2 2 2
    pop_13vdpn1_site_2 2 1
    pop_13vdpn1_site_2 2 1
    pop_13vdpn1_site_2 2 1
    pop_13vdpn1_site_2 2 1
    pop_13vdpn1_site_2 2 1
    pop_13vdpn1_site_2 2 1
    pop_13vdpn1_site_2 2 1
    pop_13vdpn1_site_3 2 1
"""), sep="\s+", engine="python")

df = df.reset_index()

形状应该是 (40, 3):

df.shape

Smote 接受数组,因此我们需要定义 x 和 y 值。

X_train = np.array(df['role']).reshape(40,1)
y_train = np.array(df['value']).reshape(40,)

实际打击:

from imblearn.over_sampling import SMOTE
sm = SMOTE(random_state=42)
X,y = sm.fit_resample(X_train,y_train)

将给定的 Xy 放入 DataFrame 中:

ndf = pd.DataFrame({'role':X.reshape(68,), 'value':y})

改写原来的名字。

ndf['name'] = ndf['role'].apply(lambda x: 'pop_13vdpn1_site_'+str(x))

看看数据是不是比较均衡

from collections import Counter
Counter(df['role'])
Counter(ndf['role'])