根据元素的长度删除列表中的相邻项目组
Remove adjacent items group in list based on length of elements
我有一个以这种方式从 PDF 文本提取的项目列表:
['performed three times. Data represent the mean±SEM of threeindependent experiments. *P<0.05, **P<0.005, ***P<0.001.', 'B','O-GlcNAc', 'AMPK', 'pAMPK', 'SREBP-1', 'ACC', 'FAS', 'actin', 'C','T', 'L', 'D', 'O', 'N', 'T', 'M', 'G', 'C', 'T', 'L', 'D', 'O', 'N','T', 'M', 'G', 'HaCaT HeLa', 'O', '-G', 'lN', 'A', 'c', 'le', 'v','e', 'l', '(A', '.U', ')', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L','0.0', '2.5', '1.5', '1.0', '0.5', 'H', 'a', 'C', 'a', 'T', 'D', 'O','N', 'H', 'a', 'C', 'a', 'T', 'T', 'M', 'G', '2.0', '**', '***', 'S','R', 'E', 'B', 'P', '-1', 'le', 'v', 'e', 'l', 'H', 'a', 'C', 'a','T', 'C', 'T', 'L', '0.0', '1.5', '1.0', '0.5', 'H', 'a', 'C', 'a','T', 'D', 'O', 'N', 'H', 'a', 'C', 'a', 'T', 'T', 'M', 'G', '2.0','F', 'A', 'S', '(A', '.U', ')', 'H', 'a', 'C', 'a', 'T', 'C', 'T','L', '0.0', '1.5', '1.0', '0.5', 'H', 'a', 'C', 'a', 'T', 'D', 'O','N', 'H', 'a', 'C', 'a', 'T', 'T', 'M', 'G', '2.0', 'A', 'C', 'C','(A', '.U', ')', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', '0.0', '2.5','1.5', '1.0', '0.5', 'H', 'a', 'C', 'a', 'T', 'D', 'O', 'N', 'H', 'a','C', 'a', 'T', 'T', 'M', 'G', '2.0', 'O', '-G', 'lc', 'N', 'A', 'c','le', 'v', 'e', 'l', '(A', '.U', ')', 'H', 'e', 'L', 'a', 'C', 'T','L', '0.0', '1.5', '1.0', '0.5', 'H', 'e', 'L', 'a', 'D', 'O', 'N','H', 'e', 'L', 'a', 'T', 'M', 'G', '2.0', '***', '***', 'S', 'R', 'E','B', 'P', '-1', 'le', 'v', 'e', 'l', 'H', 'e', 'L', 'a', 'C', 'T','L', '0.0', '1.5', '1.0', '0.5', 'H', 'e', 'L', 'a', 'D', 'O', 'N','H', 'e', 'L', 'a', 'T', 'M', 'G', '2.0', '***', 'F', 'A', 'S', '(A','.U', ')', 'H', 'e', 'L', 'a', 'C', 'T', 'L', '0.0', '1.5', '1.0','0.5', 'H', 'e', 'L', 'a', 'D', 'O', 'N', 'H', 'e', 'L', 'a', 'T','M', 'G', '2.0', '***', 'A', 'C', 'C', '(A', '.U', ')', 'H', 'e', 'L','a', 'C', 'T', 'L', '0.0', '1.5', '1.0', '0.5', 'H', 'e', 'L', 'a','D', 'O', 'N', 'H', 'e', 'L', 'a', 'T', 'M', 'G', '2.0', '***', '***','***', '***', '***', '***', '***', '*** ***', '***', 'O-GlcNAc','AMPK', 'pAMPK', 'SREBP-1', 'ACC', 'FAS', '�-actin', 'O', '-G', 'lN','A', 'c', 'le', 'v', 'e', 'l', '(A', '.U', ')', 'C', 'T', 'L', 'H','a', 'C', 'a', 'T', '0.0', '1.5', '1.0', '0.5', 'Q', 'u', 'e', 'r','H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', 'H', 'e', 'L', 'a', '2.0','Q', 'u', 'e', 'r', 'H', 'e', 'L', 'a', 'p', 'A', 'M', 'P', 'K', '(A','.U', ')', 'C', 'T', 'L', 'H', 'a', 'C', 'a', 'T', '0.0', '1.5','1.0', '0.5', 'Q', 'u', 'e', 'r', 'H', 'a', 'C', 'a', 'T', 'C', 'T','L', 'H', 'e', 'L', 'a', '2.5 ***', 'Q', 'u', 'e', 'r', 'H', 'e', 'L','a', 'S', 'R', 'E', 'B', 'P', '-1', 'le', 'v', 'e', 'l', 'C', 'T','L', 'H', 'a', 'C', 'a', 'T', '0.0', '1.5', '1.0', '0.5', 'Q', 'u','e', 'r', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', 'H', 'e', 'L', 'a','**', 'Q', 'u', 'e', 'r', 'H', 'e', 'L', 'a', 'A', 'C', 'C', '(A','.U', ')', 'C', 'T', 'L', 'H', 'a', 'C', 'a', 'T', '0.0', '1.5','1.0', '0.5', 'Q', 'u', 'e', 'r', 'H', 'a', 'C', 'a', 'T', 'C', 'T','L', 'H', 'e', 'L', 'a', '2.0', '***', 'Q', 'u', 'e', 'r', 'H', 'e','L', 'a', 'F', 'A', 'S', '(A', '.U', ')', 'C', 'T', 'L', 'H', 'a','C', 'a', 'T', '0.0', '1.5', '1.0', '0.5', 'Q', 'u', 'e', 'r', 'H','a', 'C', 'a', 'T', 'C', 'T', 'L', 'H', 'e', 'L', 'a', '***', 'Q','u', 'e', 'r', 'H', 'e', 'L', 'a', '2.0', '***', '*** ***', '*','******* *******', 'HaCaT HeLa', 'CTL Quer CTL Quer', 'A', 'Fig. 4.Quercetin regulates SREBP1 and its target proteins']
在此列表中,我想删除所有相邻元素组 (length of group > N
),其中没有元素具有 length > M
。
伪代码为:
for item in list:
if len(item) <= M:
buffer.append(item_index)
active = True
if len(item) > M and active == True:
active = False
if len(buffer) > N:
list.replace_at_index(buffer_by_index,'')
buffer.clear()
感谢您的帮助
以下是如何使用内置 enumerate
方法遍历列表中每个元素索引旁边的元素:
lst = ['performed three times. Data represent the mean±SEM of threeindependent experiments. *P<0.05, **P<0.005, ***P<0.001.', 'B','O-GlcNAc', 'AMPK', 'pAMPK', 'SREBP-1', 'ACC', 'FAS', 'actin', 'C','T', 'L', 'D', 'O', 'N', 'T', 'M', 'G', 'C', 'T', 'L', 'D', 'O', 'N','T', 'M', 'G', 'HaCaT HeLa', 'O', '-G', 'lN', 'A', 'c', 'le', 'v','e', 'l', '(A', '.U', ')', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L','0.0', '2.5', '1.5', '1.0', '0.5', 'H', 'a', 'C', 'a', 'T', 'D', 'O','N', 'H', 'a', 'C', 'a', 'T', 'T', 'M', 'G', '2.0', '**', '***', 'S','R', 'E', 'B', 'P', '-1', 'le', 'v', 'e', 'l', 'H', 'a', 'C', 'a','T', 'C', 'T', 'L', '0.0', '1.5', '1.0', '0.5', 'H', 'a', 'C', 'a','T', 'D', 'O', 'N', 'H', 'a', 'C', 'a', 'T', 'T', 'M', 'G', '2.0','F', 'A', 'S', '(A', '.U', ')', 'H', 'a', 'C', 'a', 'T', 'C', 'T','L', '0.0', '1.5', '1.0', '0.5', 'H', 'a', 'C', 'a', 'T', 'D', 'O','N', 'H', 'a', 'C', 'a', 'T', 'T', 'M', 'G', '2.0', 'A', 'C', 'C','(A', '.U', ')', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', '0.0', '2.5','1.5', '1.0', '0.5', 'H', 'a', 'C', 'a', 'T', 'D', 'O', 'N', 'H', 'a','C', 'a', 'T', 'T', 'M', 'G', '2.0', 'O', '-G', 'lc', 'N', 'A', 'c','le', 'v', 'e', 'l', '(A', '.U', ')', 'H', 'e', 'L', 'a', 'C', 'T','L', '0.0', '1.5', '1.0', '0.5', 'H', 'e', 'L', 'a', 'D', 'O', 'N','H', 'e', 'L', 'a', 'T', 'M', 'G', '2.0', '***', '***', 'S', 'R', 'E','B', 'P', '-1', 'le', 'v', 'e', 'l', 'H', 'e', 'L', 'a', 'C', 'T','L', '0.0', '1.5', '1.0', '0.5', 'H', 'e', 'L', 'a', 'D', 'O', 'N','H', 'e', 'L', 'a', 'T', 'M', 'G', '2.0', '***', 'F', 'A', 'S', '(A','.U', ')', 'H', 'e', 'L', 'a', 'C', 'T', 'L', '0.0', '1.5', '1.0','0.5', 'H', 'e', 'L', 'a', 'D', 'O', 'N', 'H', 'e', 'L', 'a', 'T','M', 'G', '2.0', '***', 'A', 'C', 'C', '(A', '.U', ')', 'H', 'e', 'L','a', 'C', 'T', 'L', '0.0', '1.5', '1.0', '0.5', 'H', 'e', 'L', 'a','D', 'O', 'N', 'H', 'e', 'L', 'a', 'T', 'M', 'G', '2.0', '***', '***','***', '***', '***', '***', '***', '*** ***', '***', 'O-GlcNAc','AMPK', 'pAMPK', 'SREBP-1', 'ACC', 'FAS', '�-actin', 'O', '-G', 'lN','A', 'c', 'le', 'v', 'e', 'l', '(A', '.U', ')', 'C', 'T', 'L', 'H','a', 'C', 'a', 'T', '0.0', '1.5', '1.0', '0.5', 'Q', 'u', 'e', 'r','H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', 'H', 'e', 'L', 'a', '2.0','Q', 'u', 'e', 'r', 'H', 'e', 'L', 'a', 'p', 'A', 'M', 'P', 'K', '(A','.U', ')', 'C', 'T', 'L', 'H', 'a', 'C', 'a', 'T', '0.0', '1.5','1.0', '0.5', 'Q', 'u', 'e', 'r', 'H', 'a', 'C', 'a', 'T', 'C', 'T','L', 'H', 'e', 'L', 'a', '2.5 ***', 'Q', 'u', 'e', 'r', 'H', 'e', 'L','a', 'S', 'R', 'E', 'B', 'P', '-1', 'le', 'v', 'e', 'l', 'C', 'T','L', 'H', 'a', 'C', 'a', 'T', '0.0', '1.5', '1.0', '0.5', 'Q', 'u','e', 'r', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', 'H', 'e', 'L', 'a','**', 'Q', 'u', 'e', 'r', 'H', 'e', 'L', 'a', 'A', 'C', 'C', '(A','.U', ')', 'C', 'T', 'L', 'H', 'a', 'C', 'a', 'T', '0.0', '1.5','1.0', '0.5', 'Q', 'u', 'e', 'r', 'H', 'a', 'C', 'a', 'T', 'C', 'T','L', 'H', 'e', 'L', 'a', '2.0', '***', 'Q', 'u', 'e', 'r', 'H', 'e','L', 'a', 'F', 'A', 'S', '(A', '.U', ')', 'C', 'T', 'L', 'H', 'a','C', 'a', 'T', '0.0', '1.5', '1.0', '0.5', 'Q', 'u', 'e', 'r', 'H','a', 'C', 'a', 'T', 'C', 'T', 'L', 'H', 'e', 'L', 'a', '***', 'Q','u', 'e', 'r', 'H', 'e', 'L', 'a', '2.0', '***', '*** ***', '*','******* *******', 'HaCaT HeLa', 'CTL Quer CTL Quer', 'A', 'Fig. 4.Quercetin regulates SREBP1 and its target proteins']
N = 3
M = 5
buffer = []
for i, v in enumerate(lst):
if len(v) <= M:
buffer.append(i)
else:
if len(buffer) > N:
for i in buffer:
lst[i] = None
buffer.clear()
print(list(filter(None, lst)))
输出:
['performed three times. Data represent the mean±SEM of threeindependent experiments. *P<0.05, **P<0.005, ***P<0.001.', 'B', 'O-GlcNAc', 'AMPK', 'pAMPK', 'SREBP-1', 'HaCaT HeLa', '*** ***', '***', 'O-GlcNAc', 'AMPK', 'pAMPK', 'SREBP-1', 'ACC', 'FAS', '�-actin', '2.5 ***', '*** ***', '*', '******* *******', 'HaCaT HeLa', 'CTL Quer CTL Quer', 'A', 'Fig. 4.Quercetin regulates SREBP\xad1 and its target proteins']
不清楚具体需要什么。下面是一些我认为被要求的代码。希望这可以帮助。如果关闭...请告诉我。
伪算法
- 给定一个字符串列表。
- 使用class cntseq.
识别每个字符串的len
- 识别具有相同长度的字符串序列
- 对于每个序列,如果序列的长度
x = ['performed three times. Data represent the mean±SEM of three independent experiments. P<0.05, P<0.005, P<0.001.', 'B', 'O-GlcNAc', 'AMPK', 'pAMPK', 'SREBP-1', 'ACC', 'FAS', 'actin', 'C', 'T', 'L', 'D', 'O', 'N', 'T', 'M', 'G', 'C', 'T', 'L', 'D', 'O', 'N', 'T', 'M', 'G', 'HaCaT HeLa', 'O', '-G', 'lN', 'A', 'c', 'le', 'v', 'e', 'l', '(A', '.U', ')', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', '0.0', '2.5', '1.5', '1.0', '0.5', 'H', 'a', 'C', 'a', 'T', 'D', 'O', 'N', 'H', 'a', 'C', 'a', 'T', 'T', 'M', 'G', '2.0', '', '', 'S', 'R', 'E', 'B', 'P', '-1', 'le', 'v', 'e', 'l', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', '0.0', '1.5', '1.0', '0.5', 'H', 'a', 'C', 'a', 'T', 'D', 'O', 'N', 'H', 'a', 'C', 'a', 'T', 'T', 'M', 'G', '2.0', 'F', 'A', 'S', '(A', '.U', ')', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', '0.0', '1.5', '1.0', '0.5', 'H', 'a', 'C', 'a', 'T', 'D', 'O', 'N', 'H', 'a', 'C', 'a', 'T', 'T', 'M', 'G', '2.0', 'A', 'C', 'C', '(A', '.U', ')', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', '0.0', '2.5', '1.5', '1.0', '0.5', 'H', 'a', 'C', 'a', 'T', 'D', 'O', 'N', 'H', 'a', 'C', 'a', 'T', 'T', 'M', 'G', '2.0', 'O', '-G', 'lc', 'N', 'A', 'c', 'le', 'v', 'e', 'l', '(A', '.U', ')', 'H', 'e', 'L', 'a', 'C', 'T', 'L', '0.0', '1.5', '1.0', '0.5', 'H', 'e', 'L', 'a', 'D', 'O', 'N', 'H', 'e', 'L', 'a', 'T', 'M', 'G', '2.0', '', '', 'S', 'R', 'E', 'B', 'P', '-1', 'le', 'v', 'e', 'l', 'H', 'e', 'L', 'a', 'C', 'T', 'L', '0.0', '1.5', '1.0', '0.5', 'H', 'e', 'L', 'a', 'D', 'O', 'N', 'H', 'e', 'L', 'a', 'T', 'M', 'G', '2.0', '', 'F', 'A', 'S', '(A', '.U', ')', 'H', 'e', 'L', 'a', 'C', 'T', 'L', '0.0', '1.5', '1.0', '0.5', 'H', 'e', 'L', 'a', 'D', 'O', 'N', 'H', 'e', 'L', 'a', 'T', 'M', 'G', '2.0', '', 'A', 'C', 'C', '(A', '.U', ')', 'H', 'e', 'L', 'a', 'C', 'T', 'L', '0.0', '1.5', '1.0', '0.5', 'H', 'e', 'L', 'a', 'D', 'O', 'N', 'H', 'e', 'L', 'a', 'T', 'M', 'G', '2.0', '', '', '', '', '', '', '', '* ', '', 'O-GlcNAc', 'AMPK', 'pAMPK', 'SREBP-1', 'ACC', 'FAS', '�-actin', 'O', '-G', 'lN', 'A', 'c', 'le', 'v', 'e', 'l', '(A', '.U', ')', 'C', 'T', 'L', 'H', 'a', 'C', 'a', 'T', '0.0', '1.5', '1.0', '0.5', 'Q', 'u', 'e', 'r', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', 'H', 'e', 'L', 'a', '2.0', 'Q', 'u', 'e', 'r', 'H', 'e', 'L', 'a', 'p', 'A', 'M', 'P', 'K', '(A', '.U', ')', 'C', 'T', 'L', 'H', 'a', 'C', 'a', 'T', '0.0', '1.5', '1.0', '0.5', 'Q', 'u', 'e', 'r', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', 'H', 'e', 'L', 'a', '2.5 ', 'Q', 'u', 'e', 'r', 'H', 'e', 'L', 'a', 'S', 'R', 'E', 'B', 'P', '-1', 'le', 'v', 'e', 'l', 'C', 'T', 'L', 'H', 'a', 'C', 'a', 'T', '0.0', '1.5', '1.0', '0.5', 'Q', 'u', 'e', 'r', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', 'H', 'e', 'L', 'a', '', 'Q', 'u', 'e', 'r', 'H', 'e', 'L', 'a', 'A', 'C', 'C', '(A', '.U', ')', 'C', 'T', 'L', 'H', 'a', 'C', 'a', 'T', '0.0', '1.5', '1.0', '0.5', 'Q', 'u', 'e', 'r', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', 'H', 'e', 'L', 'a', '2.0', '', 'Q', 'u', 'e', 'r', 'H', 'e', 'L', 'a', 'F', 'A', 'S', '(A', '.U', ')', 'C', 'T', 'L', 'H', 'a', 'C', 'a', 'T', '0.0', '1.5', '1.0', '0.5', 'Q', 'u', 'e', 'r', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', 'H', 'e', 'L', 'a', '', 'Q', 'u', 'e', 'r', 'H', 'e', 'L', 'a', '2.0', '', '* ', '', '***** *******', 'HaCaT HeLa', 'CTL Quer CTL Quer', 'A', 'Fig. 4. Quercetin regulates SREBP\xad1 and its target proteins']
df = pd.DataFrame(x, columns=['v'])
df['len'] = df.v.apply(len)
N = 2
M = 2
class cntseq(object):
'''
Define class to track sequences across the Column
'''
def __init__(self, **kwargs):
self.prevLen = -1
self.cnt = 0
self.start = None
def countN(self, r):
if r.len == self.prevLen:
# if adjcent sequence found, mark it's start with "len.start"
self.cnt += 1
if self.start == None :
self.start = int(r.name)-1
return '%d.%d'%(r.len, self.start)
else:
# non-adjcent sequence found, mark None.None"
self.prevLen = r.len
self.cnt = 0
self.start = None
return 'None.None'
# Identify sequences of adjcent lengths.
cs = cntseq()
df['seq'] = df.apply(lambda r : cs.countN(r),axis=1)
print("\nOriginal DF info")
print(df.describe())
print("\nOriginal DF ")
print(df.head())
# Compute lookup of duplicate information
df2 = pd.DataFrame(df.groupby('seq').seq.count())
df2.columns=['M']
df2 = df2.reset_index()
n = df2[df2.seq == 'None.None'].index[0]
df2 = df2.drop(78, axis=0)
print("\nLookup DF, seq has count and index for start of 'adjcent elements'")
print(df2.head())
# Compute final DF without duplicates
df3 = df[df.seq.isin(list(df2[df2.M > M].seq))].head()
print("\nFinal DF without duplicated")
print(df3)
print("\nOriginal DF info")
print(df3.describe())
output:
Original DF info
len
count 578.000000
mean 1.730104
std 5.284275
min 0.000000
25% 1.000000
50% 1.000000
75% 1.000000
max 110.000000
Original DF
v len seq
0 performed three times. Data represent the mean... 110 None.None
1 B 1 None.None
2 O-GlcNAc 8 None.None
3 AMPK 4 None.None
4 pAMPK 5 None.None
Lookup DF, seq has count and index for start of 'adjcent elements'
seq M
0 0.221 1
1 0.325 6
2 0.70 1
3 1.111 2
4 1.116 8
Final DF without duplicated
v len seq
10 T 1 1.9
11 L 1 1.9
12 D 1 1.9
13 O 1 1.9
14 N 1 1.9
Original DF info
len
count 5.0
mean 1.0
std 0.0
min 1.0
25% 1.0
50% 1.0
75% 1.0
max 1.0
我有一个以这种方式从 PDF 文本提取的项目列表:
['performed three times. Data represent the mean±SEM of threeindependent experiments. *P<0.05, **P<0.005, ***P<0.001.', 'B','O-GlcNAc', 'AMPK', 'pAMPK', 'SREBP-1', 'ACC', 'FAS', 'actin', 'C','T', 'L', 'D', 'O', 'N', 'T', 'M', 'G', 'C', 'T', 'L', 'D', 'O', 'N','T', 'M', 'G', 'HaCaT HeLa', 'O', '-G', 'lN', 'A', 'c', 'le', 'v','e', 'l', '(A', '.U', ')', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L','0.0', '2.5', '1.5', '1.0', '0.5', 'H', 'a', 'C', 'a', 'T', 'D', 'O','N', 'H', 'a', 'C', 'a', 'T', 'T', 'M', 'G', '2.0', '**', '***', 'S','R', 'E', 'B', 'P', '-1', 'le', 'v', 'e', 'l', 'H', 'a', 'C', 'a','T', 'C', 'T', 'L', '0.0', '1.5', '1.0', '0.5', 'H', 'a', 'C', 'a','T', 'D', 'O', 'N', 'H', 'a', 'C', 'a', 'T', 'T', 'M', 'G', '2.0','F', 'A', 'S', '(A', '.U', ')', 'H', 'a', 'C', 'a', 'T', 'C', 'T','L', '0.0', '1.5', '1.0', '0.5', 'H', 'a', 'C', 'a', 'T', 'D', 'O','N', 'H', 'a', 'C', 'a', 'T', 'T', 'M', 'G', '2.0', 'A', 'C', 'C','(A', '.U', ')', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', '0.0', '2.5','1.5', '1.0', '0.5', 'H', 'a', 'C', 'a', 'T', 'D', 'O', 'N', 'H', 'a','C', 'a', 'T', 'T', 'M', 'G', '2.0', 'O', '-G', 'lc', 'N', 'A', 'c','le', 'v', 'e', 'l', '(A', '.U', ')', 'H', 'e', 'L', 'a', 'C', 'T','L', '0.0', '1.5', '1.0', '0.5', 'H', 'e', 'L', 'a', 'D', 'O', 'N','H', 'e', 'L', 'a', 'T', 'M', 'G', '2.0', '***', '***', 'S', 'R', 'E','B', 'P', '-1', 'le', 'v', 'e', 'l', 'H', 'e', 'L', 'a', 'C', 'T','L', '0.0', '1.5', '1.0', '0.5', 'H', 'e', 'L', 'a', 'D', 'O', 'N','H', 'e', 'L', 'a', 'T', 'M', 'G', '2.0', '***', 'F', 'A', 'S', '(A','.U', ')', 'H', 'e', 'L', 'a', 'C', 'T', 'L', '0.0', '1.5', '1.0','0.5', 'H', 'e', 'L', 'a', 'D', 'O', 'N', 'H', 'e', 'L', 'a', 'T','M', 'G', '2.0', '***', 'A', 'C', 'C', '(A', '.U', ')', 'H', 'e', 'L','a', 'C', 'T', 'L', '0.0', '1.5', '1.0', '0.5', 'H', 'e', 'L', 'a','D', 'O', 'N', 'H', 'e', 'L', 'a', 'T', 'M', 'G', '2.0', '***', '***','***', '***', '***', '***', '***', '*** ***', '***', 'O-GlcNAc','AMPK', 'pAMPK', 'SREBP-1', 'ACC', 'FAS', '�-actin', 'O', '-G', 'lN','A', 'c', 'le', 'v', 'e', 'l', '(A', '.U', ')', 'C', 'T', 'L', 'H','a', 'C', 'a', 'T', '0.0', '1.5', '1.0', '0.5', 'Q', 'u', 'e', 'r','H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', 'H', 'e', 'L', 'a', '2.0','Q', 'u', 'e', 'r', 'H', 'e', 'L', 'a', 'p', 'A', 'M', 'P', 'K', '(A','.U', ')', 'C', 'T', 'L', 'H', 'a', 'C', 'a', 'T', '0.0', '1.5','1.0', '0.5', 'Q', 'u', 'e', 'r', 'H', 'a', 'C', 'a', 'T', 'C', 'T','L', 'H', 'e', 'L', 'a', '2.5 ***', 'Q', 'u', 'e', 'r', 'H', 'e', 'L','a', 'S', 'R', 'E', 'B', 'P', '-1', 'le', 'v', 'e', 'l', 'C', 'T','L', 'H', 'a', 'C', 'a', 'T', '0.0', '1.5', '1.0', '0.5', 'Q', 'u','e', 'r', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', 'H', 'e', 'L', 'a','**', 'Q', 'u', 'e', 'r', 'H', 'e', 'L', 'a', 'A', 'C', 'C', '(A','.U', ')', 'C', 'T', 'L', 'H', 'a', 'C', 'a', 'T', '0.0', '1.5','1.0', '0.5', 'Q', 'u', 'e', 'r', 'H', 'a', 'C', 'a', 'T', 'C', 'T','L', 'H', 'e', 'L', 'a', '2.0', '***', 'Q', 'u', 'e', 'r', 'H', 'e','L', 'a', 'F', 'A', 'S', '(A', '.U', ')', 'C', 'T', 'L', 'H', 'a','C', 'a', 'T', '0.0', '1.5', '1.0', '0.5', 'Q', 'u', 'e', 'r', 'H','a', 'C', 'a', 'T', 'C', 'T', 'L', 'H', 'e', 'L', 'a', '***', 'Q','u', 'e', 'r', 'H', 'e', 'L', 'a', '2.0', '***', '*** ***', '*','******* *******', 'HaCaT HeLa', 'CTL Quer CTL Quer', 'A', 'Fig. 4.Quercetin regulates SREBP1 and its target proteins']
在此列表中,我想删除所有相邻元素组 (length of group > N
),其中没有元素具有 length > M
。
伪代码为:
for item in list:
if len(item) <= M:
buffer.append(item_index)
active = True
if len(item) > M and active == True:
active = False
if len(buffer) > N:
list.replace_at_index(buffer_by_index,'')
buffer.clear()
感谢您的帮助
以下是如何使用内置 enumerate
方法遍历列表中每个元素索引旁边的元素:
lst = ['performed three times. Data represent the mean±SEM of threeindependent experiments. *P<0.05, **P<0.005, ***P<0.001.', 'B','O-GlcNAc', 'AMPK', 'pAMPK', 'SREBP-1', 'ACC', 'FAS', 'actin', 'C','T', 'L', 'D', 'O', 'N', 'T', 'M', 'G', 'C', 'T', 'L', 'D', 'O', 'N','T', 'M', 'G', 'HaCaT HeLa', 'O', '-G', 'lN', 'A', 'c', 'le', 'v','e', 'l', '(A', '.U', ')', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L','0.0', '2.5', '1.5', '1.0', '0.5', 'H', 'a', 'C', 'a', 'T', 'D', 'O','N', 'H', 'a', 'C', 'a', 'T', 'T', 'M', 'G', '2.0', '**', '***', 'S','R', 'E', 'B', 'P', '-1', 'le', 'v', 'e', 'l', 'H', 'a', 'C', 'a','T', 'C', 'T', 'L', '0.0', '1.5', '1.0', '0.5', 'H', 'a', 'C', 'a','T', 'D', 'O', 'N', 'H', 'a', 'C', 'a', 'T', 'T', 'M', 'G', '2.0','F', 'A', 'S', '(A', '.U', ')', 'H', 'a', 'C', 'a', 'T', 'C', 'T','L', '0.0', '1.5', '1.0', '0.5', 'H', 'a', 'C', 'a', 'T', 'D', 'O','N', 'H', 'a', 'C', 'a', 'T', 'T', 'M', 'G', '2.0', 'A', 'C', 'C','(A', '.U', ')', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', '0.0', '2.5','1.5', '1.0', '0.5', 'H', 'a', 'C', 'a', 'T', 'D', 'O', 'N', 'H', 'a','C', 'a', 'T', 'T', 'M', 'G', '2.0', 'O', '-G', 'lc', 'N', 'A', 'c','le', 'v', 'e', 'l', '(A', '.U', ')', 'H', 'e', 'L', 'a', 'C', 'T','L', '0.0', '1.5', '1.0', '0.5', 'H', 'e', 'L', 'a', 'D', 'O', 'N','H', 'e', 'L', 'a', 'T', 'M', 'G', '2.0', '***', '***', 'S', 'R', 'E','B', 'P', '-1', 'le', 'v', 'e', 'l', 'H', 'e', 'L', 'a', 'C', 'T','L', '0.0', '1.5', '1.0', '0.5', 'H', 'e', 'L', 'a', 'D', 'O', 'N','H', 'e', 'L', 'a', 'T', 'M', 'G', '2.0', '***', 'F', 'A', 'S', '(A','.U', ')', 'H', 'e', 'L', 'a', 'C', 'T', 'L', '0.0', '1.5', '1.0','0.5', 'H', 'e', 'L', 'a', 'D', 'O', 'N', 'H', 'e', 'L', 'a', 'T','M', 'G', '2.0', '***', 'A', 'C', 'C', '(A', '.U', ')', 'H', 'e', 'L','a', 'C', 'T', 'L', '0.0', '1.5', '1.0', '0.5', 'H', 'e', 'L', 'a','D', 'O', 'N', 'H', 'e', 'L', 'a', 'T', 'M', 'G', '2.0', '***', '***','***', '***', '***', '***', '***', '*** ***', '***', 'O-GlcNAc','AMPK', 'pAMPK', 'SREBP-1', 'ACC', 'FAS', '�-actin', 'O', '-G', 'lN','A', 'c', 'le', 'v', 'e', 'l', '(A', '.U', ')', 'C', 'T', 'L', 'H','a', 'C', 'a', 'T', '0.0', '1.5', '1.0', '0.5', 'Q', 'u', 'e', 'r','H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', 'H', 'e', 'L', 'a', '2.0','Q', 'u', 'e', 'r', 'H', 'e', 'L', 'a', 'p', 'A', 'M', 'P', 'K', '(A','.U', ')', 'C', 'T', 'L', 'H', 'a', 'C', 'a', 'T', '0.0', '1.5','1.0', '0.5', 'Q', 'u', 'e', 'r', 'H', 'a', 'C', 'a', 'T', 'C', 'T','L', 'H', 'e', 'L', 'a', '2.5 ***', 'Q', 'u', 'e', 'r', 'H', 'e', 'L','a', 'S', 'R', 'E', 'B', 'P', '-1', 'le', 'v', 'e', 'l', 'C', 'T','L', 'H', 'a', 'C', 'a', 'T', '0.0', '1.5', '1.0', '0.5', 'Q', 'u','e', 'r', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', 'H', 'e', 'L', 'a','**', 'Q', 'u', 'e', 'r', 'H', 'e', 'L', 'a', 'A', 'C', 'C', '(A','.U', ')', 'C', 'T', 'L', 'H', 'a', 'C', 'a', 'T', '0.0', '1.5','1.0', '0.5', 'Q', 'u', 'e', 'r', 'H', 'a', 'C', 'a', 'T', 'C', 'T','L', 'H', 'e', 'L', 'a', '2.0', '***', 'Q', 'u', 'e', 'r', 'H', 'e','L', 'a', 'F', 'A', 'S', '(A', '.U', ')', 'C', 'T', 'L', 'H', 'a','C', 'a', 'T', '0.0', '1.5', '1.0', '0.5', 'Q', 'u', 'e', 'r', 'H','a', 'C', 'a', 'T', 'C', 'T', 'L', 'H', 'e', 'L', 'a', '***', 'Q','u', 'e', 'r', 'H', 'e', 'L', 'a', '2.0', '***', '*** ***', '*','******* *******', 'HaCaT HeLa', 'CTL Quer CTL Quer', 'A', 'Fig. 4.Quercetin regulates SREBP1 and its target proteins']
N = 3
M = 5
buffer = []
for i, v in enumerate(lst):
if len(v) <= M:
buffer.append(i)
else:
if len(buffer) > N:
for i in buffer:
lst[i] = None
buffer.clear()
print(list(filter(None, lst)))
输出:
['performed three times. Data represent the mean±SEM of threeindependent experiments. *P<0.05, **P<0.005, ***P<0.001.', 'B', 'O-GlcNAc', 'AMPK', 'pAMPK', 'SREBP-1', 'HaCaT HeLa', '*** ***', '***', 'O-GlcNAc', 'AMPK', 'pAMPK', 'SREBP-1', 'ACC', 'FAS', '�-actin', '2.5 ***', '*** ***', '*', '******* *******', 'HaCaT HeLa', 'CTL Quer CTL Quer', 'A', 'Fig. 4.Quercetin regulates SREBP\xad1 and its target proteins']
不清楚具体需要什么。下面是一些我认为被要求的代码。希望这可以帮助。如果关闭...请告诉我。
伪算法
- 给定一个字符串列表。
- 使用class cntseq. 识别每个字符串的len
- 识别具有相同长度的字符串序列
- 对于每个序列,如果序列的长度
x = ['performed three times. Data represent the mean±SEM of three independent experiments. P<0.05, P<0.005, P<0.001.', 'B', 'O-GlcNAc', 'AMPK', 'pAMPK', 'SREBP-1', 'ACC', 'FAS', 'actin', 'C', 'T', 'L', 'D', 'O', 'N', 'T', 'M', 'G', 'C', 'T', 'L', 'D', 'O', 'N', 'T', 'M', 'G', 'HaCaT HeLa', 'O', '-G', 'lN', 'A', 'c', 'le', 'v', 'e', 'l', '(A', '.U', ')', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', '0.0', '2.5', '1.5', '1.0', '0.5', 'H', 'a', 'C', 'a', 'T', 'D', 'O', 'N', 'H', 'a', 'C', 'a', 'T', 'T', 'M', 'G', '2.0', '', '', 'S', 'R', 'E', 'B', 'P', '-1', 'le', 'v', 'e', 'l', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', '0.0', '1.5', '1.0', '0.5', 'H', 'a', 'C', 'a', 'T', 'D', 'O', 'N', 'H', 'a', 'C', 'a', 'T', 'T', 'M', 'G', '2.0', 'F', 'A', 'S', '(A', '.U', ')', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', '0.0', '1.5', '1.0', '0.5', 'H', 'a', 'C', 'a', 'T', 'D', 'O', 'N', 'H', 'a', 'C', 'a', 'T', 'T', 'M', 'G', '2.0', 'A', 'C', 'C', '(A', '.U', ')', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', '0.0', '2.5', '1.5', '1.0', '0.5', 'H', 'a', 'C', 'a', 'T', 'D', 'O', 'N', 'H', 'a', 'C', 'a', 'T', 'T', 'M', 'G', '2.0', 'O', '-G', 'lc', 'N', 'A', 'c', 'le', 'v', 'e', 'l', '(A', '.U', ')', 'H', 'e', 'L', 'a', 'C', 'T', 'L', '0.0', '1.5', '1.0', '0.5', 'H', 'e', 'L', 'a', 'D', 'O', 'N', 'H', 'e', 'L', 'a', 'T', 'M', 'G', '2.0', '', '', 'S', 'R', 'E', 'B', 'P', '-1', 'le', 'v', 'e', 'l', 'H', 'e', 'L', 'a', 'C', 'T', 'L', '0.0', '1.5', '1.0', '0.5', 'H', 'e', 'L', 'a', 'D', 'O', 'N', 'H', 'e', 'L', 'a', 'T', 'M', 'G', '2.0', '', 'F', 'A', 'S', '(A', '.U', ')', 'H', 'e', 'L', 'a', 'C', 'T', 'L', '0.0', '1.5', '1.0', '0.5', 'H', 'e', 'L', 'a', 'D', 'O', 'N', 'H', 'e', 'L', 'a', 'T', 'M', 'G', '2.0', '', 'A', 'C', 'C', '(A', '.U', ')', 'H', 'e', 'L', 'a', 'C', 'T', 'L', '0.0', '1.5', '1.0', '0.5', 'H', 'e', 'L', 'a', 'D', 'O', 'N', 'H', 'e', 'L', 'a', 'T', 'M', 'G', '2.0', '', '', '', '', '', '', '', '* ', '', 'O-GlcNAc', 'AMPK', 'pAMPK', 'SREBP-1', 'ACC', 'FAS', '�-actin', 'O', '-G', 'lN', 'A', 'c', 'le', 'v', 'e', 'l', '(A', '.U', ')', 'C', 'T', 'L', 'H', 'a', 'C', 'a', 'T', '0.0', '1.5', '1.0', '0.5', 'Q', 'u', 'e', 'r', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', 'H', 'e', 'L', 'a', '2.0', 'Q', 'u', 'e', 'r', 'H', 'e', 'L', 'a', 'p', 'A', 'M', 'P', 'K', '(A', '.U', ')', 'C', 'T', 'L', 'H', 'a', 'C', 'a', 'T', '0.0', '1.5', '1.0', '0.5', 'Q', 'u', 'e', 'r', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', 'H', 'e', 'L', 'a', '2.5 ', 'Q', 'u', 'e', 'r', 'H', 'e', 'L', 'a', 'S', 'R', 'E', 'B', 'P', '-1', 'le', 'v', 'e', 'l', 'C', 'T', 'L', 'H', 'a', 'C', 'a', 'T', '0.0', '1.5', '1.0', '0.5', 'Q', 'u', 'e', 'r', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', 'H', 'e', 'L', 'a', '', 'Q', 'u', 'e', 'r', 'H', 'e', 'L', 'a', 'A', 'C', 'C', '(A', '.U', ')', 'C', 'T', 'L', 'H', 'a', 'C', 'a', 'T', '0.0', '1.5', '1.0', '0.5', 'Q', 'u', 'e', 'r', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', 'H', 'e', 'L', 'a', '2.0', '', 'Q', 'u', 'e', 'r', 'H', 'e', 'L', 'a', 'F', 'A', 'S', '(A', '.U', ')', 'C', 'T', 'L', 'H', 'a', 'C', 'a', 'T', '0.0', '1.5', '1.0', '0.5', 'Q', 'u', 'e', 'r', 'H', 'a', 'C', 'a', 'T', 'C', 'T', 'L', 'H', 'e', 'L', 'a', '', 'Q', 'u', 'e', 'r', 'H', 'e', 'L', 'a', '2.0', '', '* ', '', '***** *******', 'HaCaT HeLa', 'CTL Quer CTL Quer', 'A', 'Fig. 4. Quercetin regulates SREBP\xad1 and its target proteins']
df = pd.DataFrame(x, columns=['v'])
df['len'] = df.v.apply(len)
N = 2
M = 2
class cntseq(object):
'''
Define class to track sequences across the Column
'''
def __init__(self, **kwargs):
self.prevLen = -1
self.cnt = 0
self.start = None
def countN(self, r):
if r.len == self.prevLen:
# if adjcent sequence found, mark it's start with "len.start"
self.cnt += 1
if self.start == None :
self.start = int(r.name)-1
return '%d.%d'%(r.len, self.start)
else:
# non-adjcent sequence found, mark None.None"
self.prevLen = r.len
self.cnt = 0
self.start = None
return 'None.None'
# Identify sequences of adjcent lengths.
cs = cntseq()
df['seq'] = df.apply(lambda r : cs.countN(r),axis=1)
print("\nOriginal DF info")
print(df.describe())
print("\nOriginal DF ")
print(df.head())
# Compute lookup of duplicate information
df2 = pd.DataFrame(df.groupby('seq').seq.count())
df2.columns=['M']
df2 = df2.reset_index()
n = df2[df2.seq == 'None.None'].index[0]
df2 = df2.drop(78, axis=0)
print("\nLookup DF, seq has count and index for start of 'adjcent elements'")
print(df2.head())
# Compute final DF without duplicates
df3 = df[df.seq.isin(list(df2[df2.M > M].seq))].head()
print("\nFinal DF without duplicated")
print(df3)
print("\nOriginal DF info")
print(df3.describe())
output:
Original DF info
len
count 578.000000
mean 1.730104
std 5.284275
min 0.000000
25% 1.000000
50% 1.000000
75% 1.000000
max 110.000000
Original DF
v len seq
0 performed three times. Data represent the mean... 110 None.None
1 B 1 None.None
2 O-GlcNAc 8 None.None
3 AMPK 4 None.None
4 pAMPK 5 None.None
Lookup DF, seq has count and index for start of 'adjcent elements'
seq M
0 0.221 1
1 0.325 6
2 0.70 1
3 1.111 2
4 1.116 8
Final DF without duplicated
v len seq
10 T 1 1.9
11 L 1 1.9
12 D 1 1.9
13 O 1 1.9
14 N 1 1.9
Original DF info
len
count 5.0
mean 1.0
std 0.0
min 1.0
25% 1.0
50% 1.0
75% 1.0
max 1.0