使用 python 获取所有可能的三维可视化的映射
Get mappings of all possible three-dimensional visualisations with python
我有一个包含五列的数据框。我从中写了一个三列三维散点的代码:
from mpl_toolkits import mplot3d
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()
ax = plt.axes(projection='3d')
ax = plt.axes(projection='3d')
ax.scatter(df[['col1']],df[['col2']],df[['col3']], cmap='viridis', linewidth=0.5)
它给了我这样的散点:
但我有 5 列,我想从中查看所有可能的 3D 散点图:(col1, col4, col5), (col2, col3, col5), ....
我该怎么做?
使用 itertools 怎么样?
from itertools import combinations
com = combinations(['col1','col2','col3','col4','col5'], 3)
for i in com:
print(i)
类似于:
from itertools import combinations
comb = combinations(['col1','col2','col3','col4','col5'], 3)
for i in list(comb):
fig = plt.figure()
ax = plt.axes(projection='3d')
ax.scatter(df[[i[0]]],df[[i[1]]],df[[i[2]]], cmap='viridis', linewidth=0.5)
我有一个包含五列的数据框。我从中写了一个三列三维散点的代码:
from mpl_toolkits import mplot3d
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()
ax = plt.axes(projection='3d')
ax = plt.axes(projection='3d')
ax.scatter(df[['col1']],df[['col2']],df[['col3']], cmap='viridis', linewidth=0.5)
它给了我这样的散点:
但我有 5 列,我想从中查看所有可能的 3D 散点图:(col1, col4, col5), (col2, col3, col5), ....
我该怎么做?
使用 itertools 怎么样?
from itertools import combinations
com = combinations(['col1','col2','col3','col4','col5'], 3)
for i in com:
print(i)
类似于:
from itertools import combinations
comb = combinations(['col1','col2','col3','col4','col5'], 3)
for i in list(comb):
fig = plt.figure()
ax = plt.axes(projection='3d')
ax.scatter(df[[i[0]]],df[[i[1]]],df[[i[2]]], cmap='viridis', linewidth=0.5)