如何将带 CUDA 的 PyTorch 添加到 Dask Helm Chart
How do I add PyTorch w/ CUDA to Dask Helm Chart
将为 CUDA 编译的 PyTorch 安装到 Dask helm chart 中,但失败:
按照 pytorch.org
上的说明安装适用于 CUDA 的 PyTorch(见下图)。
Dask helm 图表示例失败:
- name: EXTRA_CONDA_PACKAGES
value: "pytorch torchvision torchaudio cudatoolkit=11.0 -c pytorch"
您可能想查看 RAPIDS helm chart,它是 Dask helm 图表的扩展,但具有额外的 GPU 支持。
运行时安装
RAPIDS Docker images 也支持与 Dask Docker 图像相同的 EXTRA_PIP_PACKAGES
、EXTRA_CONDA_PACKAGES
和 EXTRA_APT_PACKAGES
。
# config.yaml
dask:
scheduler:
image:
repository: rapidsai/rapidsai
tag: cuda11.0-runtime-ubuntu18.04-py3.8
worker:
image:
repository: rapidsai/rapidsai
tag: cuda11.0-runtime-ubuntu18.04-py3.8
env:
- name: EXTRA_CONDA_PACKAGES
value: "-c pytorch pytorch torchvision torchaudio"
# If you're using the bundled Jupyter Lab instance you probably want to install these here too
jupyter:
image:
repository: rapidsai/rapidsai
tag: cuda11.0-runtime-ubuntu18.04-py3.8
env:
- name: EXTRA_CONDA_PACKAGES
value: "-c pytorch pytorch torchvision torchaudio"
$ helm install rapidstest rapidsai/rapidsai -f config.yaml
提前安装
上述方法意味着每次启动worker时都会安装依赖项。因此,您可能更愿意创建自己的自定义 Docker 图像,其中已经包含这些依赖项。
# Dockerfile
FROM rapidsai/rapidsai:cuda11.0-runtime-ubuntu18.04-py3.8
RUN conda install -n rapids -c pytorch pytorch torchvision torchaudio
$ docker build -t jacobtomlinson/customrapids:latest .
$ docker push jacobtomlinson/customrapids:latest
# config.yaml
dask:
scheduler:
image:
repository: jacobtomlinson/customrapids
tag: latest
worker:
image:
repository: jacobtomlinson/customrapids
tag: latest
# If you're using the bundled Jupyter Lab instance you probably want to install these here too
jupyter:
image:
repository: jacobtomlinson/customrapids
tag: latest
$ helm install rapidstest rapidsai/rapidsai -f config.yaml
将为 CUDA 编译的 PyTorch 安装到 Dask helm chart 中,但失败:
按照 pytorch.org
上的说明安装适用于 CUDA 的 PyTorch(见下图)。
Dask helm 图表示例失败:
- name: EXTRA_CONDA_PACKAGES
value: "pytorch torchvision torchaudio cudatoolkit=11.0 -c pytorch"
您可能想查看 RAPIDS helm chart,它是 Dask helm 图表的扩展,但具有额外的 GPU 支持。
运行时安装
RAPIDS Docker images 也支持与 Dask Docker 图像相同的 EXTRA_PIP_PACKAGES
、EXTRA_CONDA_PACKAGES
和 EXTRA_APT_PACKAGES
。
# config.yaml
dask:
scheduler:
image:
repository: rapidsai/rapidsai
tag: cuda11.0-runtime-ubuntu18.04-py3.8
worker:
image:
repository: rapidsai/rapidsai
tag: cuda11.0-runtime-ubuntu18.04-py3.8
env:
- name: EXTRA_CONDA_PACKAGES
value: "-c pytorch pytorch torchvision torchaudio"
# If you're using the bundled Jupyter Lab instance you probably want to install these here too
jupyter:
image:
repository: rapidsai/rapidsai
tag: cuda11.0-runtime-ubuntu18.04-py3.8
env:
- name: EXTRA_CONDA_PACKAGES
value: "-c pytorch pytorch torchvision torchaudio"
$ helm install rapidstest rapidsai/rapidsai -f config.yaml
提前安装
上述方法意味着每次启动worker时都会安装依赖项。因此,您可能更愿意创建自己的自定义 Docker 图像,其中已经包含这些依赖项。
# Dockerfile
FROM rapidsai/rapidsai:cuda11.0-runtime-ubuntu18.04-py3.8
RUN conda install -n rapids -c pytorch pytorch torchvision torchaudio
$ docker build -t jacobtomlinson/customrapids:latest .
$ docker push jacobtomlinson/customrapids:latest
# config.yaml
dask:
scheduler:
image:
repository: jacobtomlinson/customrapids
tag: latest
worker:
image:
repository: jacobtomlinson/customrapids
tag: latest
# If you're using the bundled Jupyter Lab instance you probably want to install these here too
jupyter:
image:
repository: jacobtomlinson/customrapids
tag: latest
$ helm install rapidstest rapidsai/rapidsai -f config.yaml