分级 Pandas value_counts
Binning Pandas value_counts
我有一个 Pandas 系列由 df.column.value_counts() 制作。sort_index()。
| N Months | Count |
|------|------|
| 0 | 15 |
| 1 | 9 |
| 2 | 78 |
| 3 | 151 |
| 4 | 412 |
| 5 | 181 |
| 6 | 543 |
| 7 | 175 |
| 8 | 409 |
| 9 | 594 |
| 10 | 137 |
| 11 | 202 |
| 12 | 170 |
| 13 | 446 |
| 14 | 29 |
| 15 | 39 |
| 16 | 44 |
| 17 | 253 |
| 18 | 17 |
| 19 | 34 |
| 20 | 18 |
| 21 | 37 |
| 22 | 147 |
| 23 | 12 |
| 24 | 31 |
| 25 | 15 |
| 26 | 117 |
| 27 | 8 |
| 28 | 38 |
| 29 | 23 |
| 30 | 198 |
| 31 | 29 |
| 32 | 122 |
| 33 | 50 |
| 34 | 60 |
| 35 | 357 |
| 36 | 329 |
| 37 | 457 |
| 38 | 609 |
| 39 | 4744 |
| 40 | 1120 |
| 41 | 591 |
| 42 | 328 |
| 43 | 148 |
| 44 | 46 |
| 45 | 10 |
| 46 | 1 |
| 47 | 1 |
| 48 | 7 |
| 50 | 2 |
我想要的输出是
| bin | Total |
|-------|--------|
| 0-13 | 3522 |
| 14-26 | 793 |
| 27-50 | 9278 |
我尝试了 df.column.value_counts(bins=3).sort_index() 但得到了
| bin | Total |
|---------------------------------|-------|
| (-0.051000000000000004, 16.667] | 3634 |
| (16.667, 33.333] | 1149 |
| (33.333, 50.0] | 8810 |
我可以用
得到正确的结果
a = df.column.value_counts().sort_index()[:14].sum()
b = df.column.value_counts().sort_index()[14:27].sum()
c = df.column.value_counts().sort_index()[28:].sum()
print(a, b, c)
Output: 3522 793 9270
但我想知道是否有 pandas 方法可以做我想做的事。非常欢迎任何建议。 :-)
您可以使用 pd.cut
:
pd.cut(df['N Months'], [0,13, 26, 50], include_lowest=True).value_counts()
Update 您应该可以将自定义 bin 传递给 value_counts
:
df['N Months'].value_counts(bins = [0,13, 26, 50])
输出:
N Months
(-0.001, 13.0] 3522
(13.0, 26.0] 793
(26.0, 50.0] 9278
Name: Count, dtype: int64
我有一个 Pandas 系列由 df.column.value_counts() 制作。sort_index()。
| N Months | Count |
|------|------|
| 0 | 15 |
| 1 | 9 |
| 2 | 78 |
| 3 | 151 |
| 4 | 412 |
| 5 | 181 |
| 6 | 543 |
| 7 | 175 |
| 8 | 409 |
| 9 | 594 |
| 10 | 137 |
| 11 | 202 |
| 12 | 170 |
| 13 | 446 |
| 14 | 29 |
| 15 | 39 |
| 16 | 44 |
| 17 | 253 |
| 18 | 17 |
| 19 | 34 |
| 20 | 18 |
| 21 | 37 |
| 22 | 147 |
| 23 | 12 |
| 24 | 31 |
| 25 | 15 |
| 26 | 117 |
| 27 | 8 |
| 28 | 38 |
| 29 | 23 |
| 30 | 198 |
| 31 | 29 |
| 32 | 122 |
| 33 | 50 |
| 34 | 60 |
| 35 | 357 |
| 36 | 329 |
| 37 | 457 |
| 38 | 609 |
| 39 | 4744 |
| 40 | 1120 |
| 41 | 591 |
| 42 | 328 |
| 43 | 148 |
| 44 | 46 |
| 45 | 10 |
| 46 | 1 |
| 47 | 1 |
| 48 | 7 |
| 50 | 2 |
我想要的输出是
| bin | Total |
|-------|--------|
| 0-13 | 3522 |
| 14-26 | 793 |
| 27-50 | 9278 |
我尝试了 df.column.value_counts(bins=3).sort_index() 但得到了
| bin | Total |
|---------------------------------|-------|
| (-0.051000000000000004, 16.667] | 3634 |
| (16.667, 33.333] | 1149 |
| (33.333, 50.0] | 8810 |
我可以用
得到正确的结果a = df.column.value_counts().sort_index()[:14].sum()
b = df.column.value_counts().sort_index()[14:27].sum()
c = df.column.value_counts().sort_index()[28:].sum()
print(a, b, c)
Output: 3522 793 9270
但我想知道是否有 pandas 方法可以做我想做的事。非常欢迎任何建议。 :-)
您可以使用 pd.cut
:
pd.cut(df['N Months'], [0,13, 26, 50], include_lowest=True).value_counts()
Update 您应该可以将自定义 bin 传递给 value_counts
:
df['N Months'].value_counts(bins = [0,13, 26, 50])
输出:
N Months
(-0.001, 13.0] 3522
(13.0, 26.0] 793
(26.0, 50.0] 9278
Name: Count, dtype: int64