条形图中的统计注释
Statistical annotations in plotly bar graph
在绘图条形图中创建统计注释的好方法是什么?以及如何将下图中的p值移动到中间,即两个条形图之间?
Image of plotly graph with p-values
import plotly.graph_objects as go
import pandas as pd
df = pd.read_csv('https://raw.githubusercontent.com/mwaskom/seaborn-data/master/tips.csv')
days=['day1 and day 2', 'day 3 and day 4']
#n_numbers = ['n = 20', 'n = 14']
# Group and calculate the mean and sem
mean = df.groupby('day').mean()
sem = df.groupby('day').sem()
# Extract mean from days for input
mean_thur=df.query("day=='Thur'")['total_bill'].mean()
mean_fri=df.query("day=='Fri'")['total_bill'].mean()
mean_sat=df.query("day=='Sat'")['total_bill'].mean()
mean_sun=df.query("day=='Sun'")['total_bill'].mean()
mean_thur1=mean['total_bill'].Thur
# Extract sem from days for input
sem_thur=df.query("day=='Thur'")['total_bill'].sem()
sem_fri=df.query("day=='Fri'")['total_bill'].sem()
sem_sat=df.query("day=='Sat'")['total_bill'].sem()
sem_sun=df.query("day=='Sun'")['total_bill'].sem()
# Bar graphs and error bars for top stack only
fig = go.Figure(data=[
go.Bar(name='Thursday and Saturday', x=days, y=[mean_thur, mean_sat], marker_color='#E45746', opacity=0.8),
go.Bar(name='Friday and Sunday', x=days, y=[mean_fri, mean_sun], marker_color='#72B7B2', opacity=0.8,
error_y=dict(
type='data', # value of error bar given in data coordinates
array=[sem_fri, sem_sun], color='rgba(0,0,0,1)', thickness=2, width=10,
visible=True)
)
])
# Error bars for bottom stack
fig.add_trace(go.Scatter(
x=['day1 and day 2'], y=[mean_thur, sem_thur],
mode='markers',
name='error_bars_thursday',
error_y=dict(
type='constant',
value=sem_thur,
color='rgba(0,0,0,1)',
thickness=1.8,
width=10
),
marker=dict(color='rgba(0,0,0,1)', size=10, opacity=0),
showlegend=False
))
fig.add_trace(go.Scatter(
x=['day 3 and day 4'], y=[mean_sat, sem_sat],
mode='markers',
name='error_bars_thursday',
error_y=dict(
type='constant',
value=sem_thur,
color='rgba(0,0,0,1)',
thickness=1.8,
width=10,
),
marker=dict(color='rgba(0,0,0,1)', size=10, opacity=0),
showlegend=False
))
# Add n numbers
fig.add_trace(go.Scatter(
x=['day1 and day 2', 'day 3 and day 4'],
y=[30, 36],
mode="text",
name="n_numbers",
text=['n=20', 'n=50'],
textposition="top center",
showlegend=False
))
# Add shapes for bottom bars
# Vertical line bar 1
fig.add_shape(type="line",
x0='day1 and day 2', y0=20, x1='day1 and day 2', y1=25,
line=dict(color='rgba(0,0,0,1)',width=2)
)
# Vertical line bar 2
fig.add_shape(type="line",
x0='day 3 and day 4', y0=22, x1='day 3 and day 4', y1=25,
line=dict(color='rgba(0,0,0,1)',width=2)
)
# Horizontal line bottom bars
fig.add_shape(type="line",
x0='day1 and day 2', y0=25, x1='day 3 and day 4', y1=25,
line=dict(
color='rgba(0,0,0,1)',
width=2)
)
# Add shapes for top bars
# Vertical line bar 1
fig.add_shape(type="line",
x0='day1 and day 2', y0=38, x1='day1 and day 2', y1=48,
line=dict(color='rgba(0,0,0,1)',width=2)
)
# Vertical line bar 2
fig.add_shape(type="line",
x0='day 3 and day 4', y0=44, x1='day 3 and day 4', y1=48,
line=dict(color='rgba(0,0,0,1)',width=2)
)
# Horizontal line bottom bars
fig.add_shape(type="line",
x0='day1 and day 2', y0=48, x1='day 3 and day 4', y1=48,
line=dict(
color='rgba(0,0,0,1)',
width=2)
)
# Add p-values
fig.add_trace(go.Scatter(
x=['day1 and day 2'],
y=[26],
mode="text",
name="p-value",
text=['p=0.00156'],
textposition="top center",
showlegend=False
))
# Customization of layout and traces
fig.update_layout(template='simple_white', title='', yaxis_title='Title Y', barmode='stack',
newshape_line_color='magenta', newshape_opacity=0.2,
hoverlabel_namelength=-1)
fig.update_traces(marker_line_color='rgba(0,0,0,0.8)', marker_line_width=1, opacity=0.8)
fig.update_shapes(opacity=1)
# Make figure zoomable, hide logo et cetera
config = dict({'scrollZoom':True, 'displaylogo': True,
'modeBarButtonsToAdd':['drawopenpath', 'eraseshape']
})
fig.show()
print(mean)
print(mean_thur)
print(mean_fri)
print(mean_sat)
print(mean_sun)
print(sem)
print(sem_thur)
print(sem_fri)
print(sem_sat)
print(sem_sun)
看来我必须至少再输入一个 粗体 的单词,并且可能还要再输入一个 斜体 的单词。
这是一个使用绝对文本定位(不可缩放)的解决方案。
import plotly.graph_objects as go
import pandas as pd
df = pd.read_csv('https://raw.githubusercontent.com/mwaskom/seaborn-data/master/tips.csv')
days=['day1 and day 2', 'day 3 and day 4']
# Group and calculate the mean and sem
mean = df.groupby('day').mean()
sem = df.groupby('day').sem()
# Bar graphs and error bars for top stack only
fig = go.Figure(data=[
go.Bar(name='Thursday and Saturday', x=days, y=[mean_thur, mean_sat], marker_color='#E45746', opacity=0.8),
go.Bar(name='Friday and Sunday', x=days, y=[mean_fri, mean_sun], marker_color='#72B7B2', opacity=0.8,
error_y=dict(
type='data', # value of error bar given in data coordinates
array=[sem_fri, sem_sun], color='rgba(0,0,0,1)', thickness=2, width=10,
visible=True)
)
])
# Error bars for bottom stack
fig.add_trace(go.Scatter(
x=['day1 and day 2'], y=[mean_thur],
mode='markers',
name='error_bars_thursday',
error_y=dict(
type='constant',
value=sem_thur,
color='rgba(0,0,0,1)',
thickness=1.8,
width=10
),
marker=dict(color='rgba(0,0,0,1)', size=10, opacity=0),
showlegend=False
))
fig.add_trace(go.Scatter(
x=['day 3 and day 4'], y=[mean_sat],
mode='markers',
name='error_bars_saturday',
error_y=dict(
type='constant',
value=sem_sat,
color='rgba(0,0,0,1)',
thickness=1.8,
width=10,
),
marker=dict(color='rgba(0,0,0,1)', size=10, opacity=0),
showlegend=False
))
# Add n numbers
fig.add_trace(go.Scatter(
x=['day1 and day 2', 'day 3 and day 4'],
y=[30, 36],
mode="text",
name="n_numbers",
text=['n=20', 'n=50'],
textposition="top center",
showlegend=False
))
# Add brackets for p-values
# Bottom bars
fig.add_trace(go.Scatter(x=['day1 and day 2', 'day1 and day 2', 'day 3 and day 4', 'day 3 and day 4'],
y=[20, 25, 25, 22],
fill=None, mode="lines", line=dict(color='rgba(0,0,0,1)',width=2),
showlegend=False
)
)
# Top bars
fig.add_trace(go.Scatter(x=['day1 and day 2', 'day1 and day 2', 'day 3 and day 4', 'day 3 and day 4'],
y=[40, 47, 47, 45],
fill=None, mode="lines", line=dict(color='rgba(0,0,0,1)',width=2),
showlegend=False
)
)
# Add p-values
fig.add_annotation(text="p=0.00156",
name="p-value",
xref="paper", yref="paper",
x=0.5, y=0.57, showarrow=False,
font=dict(size=12, color="black")
)
fig.add_annotation(text="***",
name="p-value",
xref="paper", yref="paper",
x=0.5, y=1.1, showarrow=False,
font=dict(size=12, color="black"),
)
# Customization of layout and traces
fig.update_layout(template='simple_white', title='', yaxis_title='Title Y', barmode='stack',
dragmode='drawrect', font_size=12,
# style of new shapes
newshape=dict(line_color='magenta', fillcolor=None, opacity=0.5),
hoverlabel_namelength=-1)
fig.update_traces(marker_line_color='rgba(0,0,0,0.8)', marker_line_width=1, textfont_size=12, opacity=0.8)
#fig.update_shapes(opacity=1)
# Make figure zoomable, hide logo et cetera
config = dict({'scrollZoom':True, 'displaylogo': True,
'modeBarButtonsToAdd':['drawopenpath', 'eraseshape']
})
fig.show(config=config)
print(mean)
print(sem)
给予
在绘图条形图中创建统计注释的好方法是什么?以及如何将下图中的p值移动到中间,即两个条形图之间?
Image of plotly graph with p-values
import plotly.graph_objects as go
import pandas as pd
df = pd.read_csv('https://raw.githubusercontent.com/mwaskom/seaborn-data/master/tips.csv')
days=['day1 and day 2', 'day 3 and day 4']
#n_numbers = ['n = 20', 'n = 14']
# Group and calculate the mean and sem
mean = df.groupby('day').mean()
sem = df.groupby('day').sem()
# Extract mean from days for input
mean_thur=df.query("day=='Thur'")['total_bill'].mean()
mean_fri=df.query("day=='Fri'")['total_bill'].mean()
mean_sat=df.query("day=='Sat'")['total_bill'].mean()
mean_sun=df.query("day=='Sun'")['total_bill'].mean()
mean_thur1=mean['total_bill'].Thur
# Extract sem from days for input
sem_thur=df.query("day=='Thur'")['total_bill'].sem()
sem_fri=df.query("day=='Fri'")['total_bill'].sem()
sem_sat=df.query("day=='Sat'")['total_bill'].sem()
sem_sun=df.query("day=='Sun'")['total_bill'].sem()
# Bar graphs and error bars for top stack only
fig = go.Figure(data=[
go.Bar(name='Thursday and Saturday', x=days, y=[mean_thur, mean_sat], marker_color='#E45746', opacity=0.8),
go.Bar(name='Friday and Sunday', x=days, y=[mean_fri, mean_sun], marker_color='#72B7B2', opacity=0.8,
error_y=dict(
type='data', # value of error bar given in data coordinates
array=[sem_fri, sem_sun], color='rgba(0,0,0,1)', thickness=2, width=10,
visible=True)
)
])
# Error bars for bottom stack
fig.add_trace(go.Scatter(
x=['day1 and day 2'], y=[mean_thur, sem_thur],
mode='markers',
name='error_bars_thursday',
error_y=dict(
type='constant',
value=sem_thur,
color='rgba(0,0,0,1)',
thickness=1.8,
width=10
),
marker=dict(color='rgba(0,0,0,1)', size=10, opacity=0),
showlegend=False
))
fig.add_trace(go.Scatter(
x=['day 3 and day 4'], y=[mean_sat, sem_sat],
mode='markers',
name='error_bars_thursday',
error_y=dict(
type='constant',
value=sem_thur,
color='rgba(0,0,0,1)',
thickness=1.8,
width=10,
),
marker=dict(color='rgba(0,0,0,1)', size=10, opacity=0),
showlegend=False
))
# Add n numbers
fig.add_trace(go.Scatter(
x=['day1 and day 2', 'day 3 and day 4'],
y=[30, 36],
mode="text",
name="n_numbers",
text=['n=20', 'n=50'],
textposition="top center",
showlegend=False
))
# Add shapes for bottom bars
# Vertical line bar 1
fig.add_shape(type="line",
x0='day1 and day 2', y0=20, x1='day1 and day 2', y1=25,
line=dict(color='rgba(0,0,0,1)',width=2)
)
# Vertical line bar 2
fig.add_shape(type="line",
x0='day 3 and day 4', y0=22, x1='day 3 and day 4', y1=25,
line=dict(color='rgba(0,0,0,1)',width=2)
)
# Horizontal line bottom bars
fig.add_shape(type="line",
x0='day1 and day 2', y0=25, x1='day 3 and day 4', y1=25,
line=dict(
color='rgba(0,0,0,1)',
width=2)
)
# Add shapes for top bars
# Vertical line bar 1
fig.add_shape(type="line",
x0='day1 and day 2', y0=38, x1='day1 and day 2', y1=48,
line=dict(color='rgba(0,0,0,1)',width=2)
)
# Vertical line bar 2
fig.add_shape(type="line",
x0='day 3 and day 4', y0=44, x1='day 3 and day 4', y1=48,
line=dict(color='rgba(0,0,0,1)',width=2)
)
# Horizontal line bottom bars
fig.add_shape(type="line",
x0='day1 and day 2', y0=48, x1='day 3 and day 4', y1=48,
line=dict(
color='rgba(0,0,0,1)',
width=2)
)
# Add p-values
fig.add_trace(go.Scatter(
x=['day1 and day 2'],
y=[26],
mode="text",
name="p-value",
text=['p=0.00156'],
textposition="top center",
showlegend=False
))
# Customization of layout and traces
fig.update_layout(template='simple_white', title='', yaxis_title='Title Y', barmode='stack',
newshape_line_color='magenta', newshape_opacity=0.2,
hoverlabel_namelength=-1)
fig.update_traces(marker_line_color='rgba(0,0,0,0.8)', marker_line_width=1, opacity=0.8)
fig.update_shapes(opacity=1)
# Make figure zoomable, hide logo et cetera
config = dict({'scrollZoom':True, 'displaylogo': True,
'modeBarButtonsToAdd':['drawopenpath', 'eraseshape']
})
fig.show()
print(mean)
print(mean_thur)
print(mean_fri)
print(mean_sat)
print(mean_sun)
print(sem)
print(sem_thur)
print(sem_fri)
print(sem_sat)
print(sem_sun)
看来我必须至少再输入一个 粗体 的单词,并且可能还要再输入一个 斜体 的单词。
这是一个使用绝对文本定位(不可缩放)的解决方案。
import plotly.graph_objects as go
import pandas as pd
df = pd.read_csv('https://raw.githubusercontent.com/mwaskom/seaborn-data/master/tips.csv')
days=['day1 and day 2', 'day 3 and day 4']
# Group and calculate the mean and sem
mean = df.groupby('day').mean()
sem = df.groupby('day').sem()
# Bar graphs and error bars for top stack only
fig = go.Figure(data=[
go.Bar(name='Thursday and Saturday', x=days, y=[mean_thur, mean_sat], marker_color='#E45746', opacity=0.8),
go.Bar(name='Friday and Sunday', x=days, y=[mean_fri, mean_sun], marker_color='#72B7B2', opacity=0.8,
error_y=dict(
type='data', # value of error bar given in data coordinates
array=[sem_fri, sem_sun], color='rgba(0,0,0,1)', thickness=2, width=10,
visible=True)
)
])
# Error bars for bottom stack
fig.add_trace(go.Scatter(
x=['day1 and day 2'], y=[mean_thur],
mode='markers',
name='error_bars_thursday',
error_y=dict(
type='constant',
value=sem_thur,
color='rgba(0,0,0,1)',
thickness=1.8,
width=10
),
marker=dict(color='rgba(0,0,0,1)', size=10, opacity=0),
showlegend=False
))
fig.add_trace(go.Scatter(
x=['day 3 and day 4'], y=[mean_sat],
mode='markers',
name='error_bars_saturday',
error_y=dict(
type='constant',
value=sem_sat,
color='rgba(0,0,0,1)',
thickness=1.8,
width=10,
),
marker=dict(color='rgba(0,0,0,1)', size=10, opacity=0),
showlegend=False
))
# Add n numbers
fig.add_trace(go.Scatter(
x=['day1 and day 2', 'day 3 and day 4'],
y=[30, 36],
mode="text",
name="n_numbers",
text=['n=20', 'n=50'],
textposition="top center",
showlegend=False
))
# Add brackets for p-values
# Bottom bars
fig.add_trace(go.Scatter(x=['day1 and day 2', 'day1 and day 2', 'day 3 and day 4', 'day 3 and day 4'],
y=[20, 25, 25, 22],
fill=None, mode="lines", line=dict(color='rgba(0,0,0,1)',width=2),
showlegend=False
)
)
# Top bars
fig.add_trace(go.Scatter(x=['day1 and day 2', 'day1 and day 2', 'day 3 and day 4', 'day 3 and day 4'],
y=[40, 47, 47, 45],
fill=None, mode="lines", line=dict(color='rgba(0,0,0,1)',width=2),
showlegend=False
)
)
# Add p-values
fig.add_annotation(text="p=0.00156",
name="p-value",
xref="paper", yref="paper",
x=0.5, y=0.57, showarrow=False,
font=dict(size=12, color="black")
)
fig.add_annotation(text="***",
name="p-value",
xref="paper", yref="paper",
x=0.5, y=1.1, showarrow=False,
font=dict(size=12, color="black"),
)
# Customization of layout and traces
fig.update_layout(template='simple_white', title='', yaxis_title='Title Y', barmode='stack',
dragmode='drawrect', font_size=12,
# style of new shapes
newshape=dict(line_color='magenta', fillcolor=None, opacity=0.5),
hoverlabel_namelength=-1)
fig.update_traces(marker_line_color='rgba(0,0,0,0.8)', marker_line_width=1, textfont_size=12, opacity=0.8)
#fig.update_shapes(opacity=1)
# Make figure zoomable, hide logo et cetera
config = dict({'scrollZoom':True, 'displaylogo': True,
'modeBarButtonsToAdd':['drawopenpath', 'eraseshape']
})
fig.show(config=config)
print(mean)
print(sem)
给予