有没有办法检查 python 中两个完整句子之间的相似性?

is there a way to check similarity between two full sentences in python?

我正在做一个这样的项目: https://www.youtube.com/watch?v=dovB8uSUUXE&feature=youtu.be 但我遇到了麻烦,因为我需要检查句子之间的相似性,例如: 如果用户说:'the person wear red T-shirt' 而不是 'the boy wear red T-shirt' 我想要一种方法来检查这两个句子之间的相似性,而不必检查每个单词之间的相似性 在 python 中有没有办法做到这一点?

我正在尝试找到一种方法来检查两个句子之间的相似性。

下面的大多数库应该是语义相似性比较的不错选择。您可以使用这些库中的预训练模型生成单词或句子向量,从而跳过直接单词比较。

句子相似度Spacy

必须首先加载所需的模型。

使用en_core_web_md使用python -m spacy download en_core_web_md下载。要使用 en_core_web_lg 使用 python -m spacy download en_core_web_lg.

大模型大约是 830mb 左右,而且相当慢,所以中模型是个不错的选择。

https://spacy.io/usage/vectors-similarity/

代码:

import spacy
nlp = spacy.load("en_core_web_lg")
#nlp = spacy.load("en_core_web_md")


doc1 = nlp(u'the person wear red T-shirt')
doc2 = nlp(u'this person is walking')
doc3 = nlp(u'the boy wear red T-shirt')


print(doc1.similarity(doc2)) 
print(doc1.similarity(doc3))
print(doc2.similarity(doc3)) 

输出:

0.7003971105290047
0.9671912343259517
0.6121211244876517

Sentence Transformers

的句子相似度

https://github.com/UKPLab/sentence-transformers

https://www.sbert.net/docs/usage/semantic_textual_similarity.html

安装 pip install -U sentence-transformers。这个生成句子嵌入。

代码:

from sentence_transformers import SentenceTransformer
model = SentenceTransformer('distilbert-base-nli-mean-tokens')

sentences = [
    'the person wear red T-shirt',
    'this person is walking',
    'the boy wear red T-shirt'
    ]
sentence_embeddings = model.encode(sentences)

for sentence, embedding in zip(sentences, sentence_embeddings):
    print("Sentence:", sentence)
    print("Embedding:", embedding)
    print("")

输出:

Sentence: the person wear red T-shirt
Embedding: [ 1.31643847e-01 -4.20616418e-01 ... 8.13076794e-01 -4.64620918e-01]

Sentence: this person is walking
Embedding: [-3.52878094e-01 -5.04286848e-02 ... -2.36091137e-01 -6.77282438e-02]

Sentence: the boy wear red T-shirt
Embedding: [-2.36365378e-01 -8.49713564e-01 ... 1.06414437e+00 -2.70157874e-01]

现在可以使用嵌入向量来计算各种相似性指标。

代码:

from sentence_transformers import SentenceTransformer, util
print(util.pytorch_cos_sim(sentence_embeddings[0], sentence_embeddings[1]))
print(util.pytorch_cos_sim(sentence_embeddings[0], sentence_embeddings[2]))
print(util.pytorch_cos_sim(sentence_embeddings[1], sentence_embeddings[2]))

输出:

tensor([[0.4644]])
tensor([[0.9070]])
tensor([[0.3276]])

scipypytorch

相同

代码:

from scipy.spatial import distance
print(1 - distance.cosine(sentence_embeddings[0], sentence_embeddings[1]))
print(1 - distance.cosine(sentence_embeddings[0], sentence_embeddings[2]))
print(1 - distance.cosine(sentence_embeddings[1], sentence_embeddings[2]))

输出:

0.4643629193305969
0.9069876074790955
0.3275738060474396

代码:

import torch.nn
cos = torch.nn.CosineSimilarity(dim=0, eps=1e-6)
b = torch.from_numpy(sentence_embeddings)
print(cos(b[0], b[1]))
print(cos(b[0], b[2]))
print(cos(b[1], b[2]))

输出:

tensor(0.4644)
tensor(0.9070)
tensor(0.3276)

TFHub Universal Sentence Encoder

的句子相似度

https://tfhub.dev/google/universal-sentence-encoder/4

https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/semantic_similarity_with_tf_hub_universal_encoder.ipynb

这个大约 1GB 的模型非常大,似乎比其他模型慢。这也会为句子生成嵌入。

代码:

import tensorflow_hub as hub

embed = hub.load("https://tfhub.dev/google/universal-sentence-encoder/4")
embeddings = embed([
    "the person wear red T-shirt",
    "this person is walking",
    "the boy wear red T-shirt"
    ])

print(embeddings)

输出:

tf.Tensor(
[[ 0.063188    0.07063895 -0.05998802 ... -0.01409875  0.01863449
   0.01505797]
 [-0.06786212  0.01993554  0.03236153 ...  0.05772103  0.01787272
   0.01740014]
 [ 0.05379306  0.07613157 -0.05256693 ... -0.01256405  0.0213196
  -0.00262441]], shape=(3, 512), dtype=float32)

代码:

from scipy.spatial import distance
print(1 - distance.cosine(embeddings[0], embeddings[1]))
print(1 - distance.cosine(embeddings[0], embeddings[2]))
print(1 - distance.cosine(embeddings[1], embeddings[2]))

输出:

0.15320375561714172
0.8592830896377563
0.09080004692077637

其他句嵌入库

https://github.com/facebookresearch/InferSent

https://github.com/Tiiiger/bert_score

这张图展示了方法,

资源

How to compute the similarity between two text documents?

https://en.wikipedia.org/wiki/Cosine_similarity#Angular_distance_and_similarity

https://towardsdatascience.com/word-distance-between-word-embeddings-cc3e9cf1d632

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.spatial.distance.cosine.html

https://www.tensorflow.org/api_docs/python/tf/keras/losses/CosineSimilarity

https://nlp.town/blog/sentence-similarity/