并行化每个修改函数父环境的独立函数调用

Parallellize Independent Function Calls that Each Modify Function's Parent Environment

我想找到一种方法来并行化重复的独立函数调用,其中每次调用都会修改函数的父环境。该函数的每次执行都是独立的,但是,由于各种原因,我无法考虑不依赖于修改函数的父环境的任何其他实现。请参阅下面的简化示例。有没有办法将父环境的副本传递给每个节点?我在 linux 系统上 运行 这个。

 create_fun <- function(){

        helper <- function(x, params) {x+params}
        helper2 <- function(z) {z+helper(z)}

        master <- function(y, a){
            parent <- parent.env(environment())
            formals(parent[['helper']])$params <- a
            helper2(y)}

       return(master)
}

# function to be called repeatedly
master <- create_fun()

# data to be iterated over
x <- expand.grid(1:100, 1:5)

# vector where output should be stored
results <- vector("numeric", nrow(x))

# task I'd like to parallelize
for(i in 1:nrow(x)){
    results[i] <- master(x[i,1], x[i, 2])
}

函数确实维护对其父环境的引用。可以看看master环境的内容(create_fun创建的环境)

ls (environment(master) )
# [1] "helper"  "helper2" "master" 

使用%dopar%你可以做到

## Globals
master <- create_fun()
x <- expand.grid(1:100, 1:5)

## Previous results
for(i in 1:nrow(x)){
    results[i] <- master(x[i,1], x[i, 2])
}

library(parallel)
library(doParallel)
cl <- makePSOCKcluster(4)
registerDoParallel(cl)

## parallel
res <- foreach(i=1:nrow(x), .combine = c) %dopar% {
    master(x[i,1], x[i,2])
}

all.equal(res, results)
# TRUE