参数的多个值
Multiple values for argument
我正在尝试转换此 code 通过 pysyft 引用传递它
像这样:
class SyNet(sy.Module):
def __init__(self,embedding_size, num_numerical_cols, output_size, layers, p ,torch_ref):
super(SyNet, self ).__init__( embedding_size, num_numerical_cols , output_size , layers , p=0.4 ,torch_ref=torch_ref )
self.all_embeddings=self.torch_ref.nn.ModuleList([nn.Embedding(ni, nf) for ni, nf in embedding_size])
self.embedding_dropout=self.torch_ref.nn.Dropout(p)
self.batch_norm_num=self.torch_ref.nn.BatchNorm1d(num_numerical_cols)
all_layers= []
num_categorical_cols = sum((nf for ni, nf in embedding_size))
input_size = num_categorical_cols + num_numerical_cols
for i in layers:
all_layers.append(self.torch_ref.nn.Linear(input_size,i))
all_layers.append(self.torch_ref.nn.ReLU(inplace=True))
all_layers.append(self.torch_ref.nn.BatchNorm1d(i))
all_layers.append(self.torch_ref.nn.Dropout(p))
input_size = i
all_layers.append(self.torch_ref.nn.Linear(layers[-1], output_size))
self.layers = self.torch_ref.nn.Sequential(*all_layers)
def forward(self, x_categorical, x_numerical):
embeddings= []
for i,e in enumerate(self.all_embeddings):
embeddings.append(e(x_categorical[:,i]))
x_numerical = self.batch_norm_num(x_numerical)
x = self.torch_ref.cat([x, x_numerical], 1)
x = self.layers(x)
return x
但是当我尝试创建模型的实例时
model = SyNet( categorical_embedding_sizes, numerical_data.shape[1], 2, [200,100,50], p=0.4 ,torch_ref= th)
我遇到类型错误
类型错误:参数有多个值 'torch_ref'
我试图更改参数的顺序,但我收到关于位置参数的错误。
你能帮帮我吗,我在 类 和函数 (oop)
方面不是很有经验
提前致谢!
正在为 Module
查看 PySyft source code。 class 父级的构造函数只接受一个参数:torch_ref
.
因此您应该调用超级构造函数:
super(SyNet, self).__init__(torch_ref=torch_ref) # line 3
正在从调用中删除除 torch_ref
之外的所有参数。
我正在尝试转换此 code 通过 pysyft 引用传递它
像这样:
class SyNet(sy.Module):
def __init__(self,embedding_size, num_numerical_cols, output_size, layers, p ,torch_ref):
super(SyNet, self ).__init__( embedding_size, num_numerical_cols , output_size , layers , p=0.4 ,torch_ref=torch_ref )
self.all_embeddings=self.torch_ref.nn.ModuleList([nn.Embedding(ni, nf) for ni, nf in embedding_size])
self.embedding_dropout=self.torch_ref.nn.Dropout(p)
self.batch_norm_num=self.torch_ref.nn.BatchNorm1d(num_numerical_cols)
all_layers= []
num_categorical_cols = sum((nf for ni, nf in embedding_size))
input_size = num_categorical_cols + num_numerical_cols
for i in layers:
all_layers.append(self.torch_ref.nn.Linear(input_size,i))
all_layers.append(self.torch_ref.nn.ReLU(inplace=True))
all_layers.append(self.torch_ref.nn.BatchNorm1d(i))
all_layers.append(self.torch_ref.nn.Dropout(p))
input_size = i
all_layers.append(self.torch_ref.nn.Linear(layers[-1], output_size))
self.layers = self.torch_ref.nn.Sequential(*all_layers)
def forward(self, x_categorical, x_numerical):
embeddings= []
for i,e in enumerate(self.all_embeddings):
embeddings.append(e(x_categorical[:,i]))
x_numerical = self.batch_norm_num(x_numerical)
x = self.torch_ref.cat([x, x_numerical], 1)
x = self.layers(x)
return x
但是当我尝试创建模型的实例时
model = SyNet( categorical_embedding_sizes, numerical_data.shape[1], 2, [200,100,50], p=0.4 ,torch_ref= th)
我遇到类型错误
类型错误:参数有多个值 'torch_ref'
我试图更改参数的顺序,但我收到关于位置参数的错误。 你能帮帮我吗,我在 类 和函数 (oop)
方面不是很有经验提前致谢!
正在为 Module
查看 PySyft source code。 class 父级的构造函数只接受一个参数:torch_ref
.
因此您应该调用超级构造函数:
super(SyNet, self).__init__(torch_ref=torch_ref) # line 3
正在从调用中删除除 torch_ref
之外的所有参数。