cv2.calibrateHandEye 在提供 3x1 旋转向量或 3x3 旋转矩阵时输出不同的结果
cv2.calibrateHandEye outputs different results when provided 3x1 rotation vector or 3x3 rotation matrix
我目前正在尝试使用 opencv 的手眼校准功能 (cv2.calibrateHandEye()) 来校准 Microsoft Azure Kinect。但是,当我插入 3x1 旋转向量而不是 3x3 旋转矩阵作为输入时,我使用所有方法得到完全不同的结果。下面,我将分享两种情况下的输出结果。
我想知道为什么会出现这种差异,因为我使用 cv2.Rodrigues 在向量和矩阵之间进行转换。
3x1 Rotation Vector case:
(19, 3) (19, 3) (19, 3) (19, 3)
--------------------------------------
Method 0
Rotation:
[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]
Translation:
[[0.]
[0.]
[0.]]
--------------------------------------
--------------------------------------
Method 1
Rotation:
[[nan nan nan]
[nan nan nan]
[nan nan nan]]
Translation:
[[0.]
[0.]
[0.]]
--------------------------------------
--------------------------------------
Method 2
Rotation:
[[-1. 0. 0.]
[ 0. -1. 0.]
[ 0. 0. 1.]]
Translation:
[[0.]
[0.]
[0.]]
--------------------------------------
--------------------------------------
Method 3
Rotation:
[[-0.03388477 0.81429681 0.57945882]
[ 0.37003643 -0.52836555 0.76413538]
Translation:
[[0.]
[0.]
[0.]]
--------------------------------------
--------------------------------------
Method 4
Rotation:
[[nan nan nan]
[nan nan nan]
[nan nan nan]]
Translation:
[[nan]
[nan]
[nan]]
--------------------------------------
3x3 Rotation Matrix case:
(19, 3, 3) (19, 3) (19, 3, 3) (19, 3)
--------------------------------------
Method 0
Rotation:
[[ 0.19681749 0.15272093 -0.96847261]
[-0.9802481 0.01110192 -0.19745987]
[-0.01940435 0.988207 0.15188945]]
Translation:
[[426.01991564]
[ 6.31112392]
[212.62483639]]
--------------------------------------
--------------------------------------
Method 1
Rotation:
[[ 4.38898532e-04 7.05825236e-02 9.97505847e-01]
[-9.99993453e-01 -3.55184483e-03 6.91318082e-04]
[-3.59178096e-03 9.97499620e-01 -7.05805026e-02]]
Translation:
[[ 113.83854629]
[ -64.48053741]
[-155.89394605]]
--------------------------------------
--------------------------------------
Method 2
Rotation:
[[-1.63313542e-04 1.12303599e-01 -9.93673928e-01]
[-9.99994011e-01 -3.45353893e-03 -2.25961739e-04]
[-3.45706791e-03 9.93667940e-01 1.12303491e-01]]
Translation:
[[429.63163945]
[-72.98653944]
[228.31050502]]
--------------------------------------
--------------------------------------
Method 3
Rotation:
[[ 0.27525174 0.87240146 0.403921 ]
[ 0.20267468 0.35804992 -0.91144019]
[-0.93976564 0.33274006 -0.07825982]]
Translation:
[[-126.85624931]
[ 205.9095892 ]
[ 90.09963159]]
--------------------------------------
--------------------------------------
Method 4
Rotation:
[[-0.20970054 0.33923475 -0.91703079]
[-0.94475058 -0.31195916 0.1006371 ]
[-0.25193655 0.88746902 0.38591023]]
Translation:
[[ 716.47999662]
[-112.67040497]
[ 604.15236449]]
--------------------------------------
对你来说可能为时已晚,但对其他人来说可能很有趣:
我偶然发现了同样的错误,在我的例子中,我有一个用于 R_gripper2base 的 Mat 向量。
我使用 push_back 将实际旋转放在列表的末尾。
当我将向量作为输入时,一切正常,但使用罗德里格斯矩阵 push_back 不仅将实际矩阵放在末尾,而且还更改了列表中每个其他条目的值。所以最后我得到了一个完全相同的矩阵向量。这就是为什么 calibrateHandEye 的结果很糟糕。
我目前正在尝试使用 opencv 的手眼校准功能 (cv2.calibrateHandEye()) 来校准 Microsoft Azure Kinect。但是,当我插入 3x1 旋转向量而不是 3x3 旋转矩阵作为输入时,我使用所有方法得到完全不同的结果。下面,我将分享两种情况下的输出结果。
我想知道为什么会出现这种差异,因为我使用 cv2.Rodrigues 在向量和矩阵之间进行转换。
3x1 Rotation Vector case:
(19, 3) (19, 3) (19, 3) (19, 3)
--------------------------------------
Method 0
Rotation:
[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]
Translation:
[[0.]
[0.]
[0.]]
--------------------------------------
--------------------------------------
Method 1
Rotation:
[[nan nan nan]
[nan nan nan]
[nan nan nan]]
Translation:
[[0.]
[0.]
[0.]]
--------------------------------------
--------------------------------------
Method 2
Rotation:
[[-1. 0. 0.]
[ 0. -1. 0.]
[ 0. 0. 1.]]
Translation:
[[0.]
[0.]
[0.]]
--------------------------------------
--------------------------------------
Method 3
Rotation:
[[-0.03388477 0.81429681 0.57945882]
[ 0.37003643 -0.52836555 0.76413538]
Translation:
[[0.]
[0.]
[0.]]
--------------------------------------
--------------------------------------
Method 4
Rotation:
[[nan nan nan]
[nan nan nan]
[nan nan nan]]
Translation:
[[nan]
[nan]
[nan]]
--------------------------------------
3x3 Rotation Matrix case:
(19, 3, 3) (19, 3) (19, 3, 3) (19, 3)
--------------------------------------
Method 0
Rotation:
[[ 0.19681749 0.15272093 -0.96847261]
[-0.9802481 0.01110192 -0.19745987]
[-0.01940435 0.988207 0.15188945]]
Translation:
[[426.01991564]
[ 6.31112392]
[212.62483639]]
--------------------------------------
--------------------------------------
Method 1
Rotation:
[[ 4.38898532e-04 7.05825236e-02 9.97505847e-01]
[-9.99993453e-01 -3.55184483e-03 6.91318082e-04]
[-3.59178096e-03 9.97499620e-01 -7.05805026e-02]]
Translation:
[[ 113.83854629]
[ -64.48053741]
[-155.89394605]]
--------------------------------------
--------------------------------------
Method 2
Rotation:
[[-1.63313542e-04 1.12303599e-01 -9.93673928e-01]
[-9.99994011e-01 -3.45353893e-03 -2.25961739e-04]
[-3.45706791e-03 9.93667940e-01 1.12303491e-01]]
Translation:
[[429.63163945]
[-72.98653944]
[228.31050502]]
--------------------------------------
--------------------------------------
Method 3
Rotation:
[[ 0.27525174 0.87240146 0.403921 ]
[ 0.20267468 0.35804992 -0.91144019]
[-0.93976564 0.33274006 -0.07825982]]
Translation:
[[-126.85624931]
[ 205.9095892 ]
[ 90.09963159]]
--------------------------------------
--------------------------------------
Method 4
Rotation:
[[-0.20970054 0.33923475 -0.91703079]
[-0.94475058 -0.31195916 0.1006371 ]
[-0.25193655 0.88746902 0.38591023]]
Translation:
[[ 716.47999662]
[-112.67040497]
[ 604.15236449]]
--------------------------------------
对你来说可能为时已晚,但对其他人来说可能很有趣: 我偶然发现了同样的错误,在我的例子中,我有一个用于 R_gripper2base 的 Mat 向量。 我使用 push_back 将实际旋转放在列表的末尾。 当我将向量作为输入时,一切正常,但使用罗德里格斯矩阵 push_back 不仅将实际矩阵放在末尾,而且还更改了列表中每个其他条目的值。所以最后我得到了一个完全相同的矩阵向量。这就是为什么 calibrateHandEye 的结果很糟糕。