Keras 模型的自定义指标,使用 Tensorflow 2.1

Custom metric for Keras model, using Tensorflow 2.1

我想使用 Keras 添加自定义指标来建模,我正在调试我的工作代码,但我没有找到执行我需要的操作的方法。

这个问题可以描述为通过逻辑多项回归的多分类问题。 我想实现的自定义指标是这样的:

(1/Number_of_Classes)*(TruePositivesClass1/TotalElementsClass1 + TruePositivesClass2/TotalElementsClass2 + ... + TruePositivesClassN/TotalElementsClassN)

其中 Number_of_Classes 必须从批次计算,即 np.unique(y_true).count() 和 每个求和项都类似于

len(np.where(y_true==class_i,1,0) == np.where(y_pred==class_i,1,0) )/np.where(y_true==class_i,1,0).sum()

根据混淆矩阵(2个变量的最小形式)

        True    False
True     15      3
False    12      1

公式为0.5*(15)/(15+12) + 0.5*(1/(1+3))=0.4027

代码可能类似于

def custom_metric(y_true,y_pred):

    total_classes = Unique(y_true) #How calculate total unique elements?
    summation = 0
    for _ in unique_value_on_target:

        # calculates Number of y_predict that are _
        true_predics_of_class = Count(y_predict,_) 

        # calculates total number of items of class _ in batch y_true
        true_values = Count(y_true,_) 

        value = true_predicts/true_values
       summation + = value
    return summation

我的预处理数据是像 x=[v1,v2,v3,v4,...,vn] 这样的 numpy 数组,而我的 objetive 列是一个 nompy 数组 y=[1, 0, 1, 0, 1, 0, 0, 1 ,..., 0, 1]

然后,将它们转换为张量:

x_train = tf.convert_to_tensor(x)
y_train = tf.convert_to_tensor(tf.keras.utils.to_categorical(y))

然后,将它们转换为tensorflow数据集对象:

train_ds = tf.data.Dataset.zip((tf.data.Dataset.from_tensor_slices(x_train),
                                tf.data.Dataset.from_tensor_slices(y_train)))

稍后,我拿一个迭代器:

 train_itr = iter(
          train_ds.shuffle(len(y_train) * 5, reshuffle_each_iteration=True).batch(len(y_train)))

最后,我采用迭代器的一个元素并训练

x_train, y_train = train_itr.get_next()
model.fit(x=x_train, y=y_train, batch_size=batch_size, epochs=epochs,
          callbacks=[custom_callback], validation_data=test_itr.get_next())

因此,由于对象是数据集迭代器,我无法找到我想要的函数来操作它们,以获得描述的自定义指标。

所以你想计算 批量中多类的平均召回率,这是我使用 numpytensorflow:

的示例代码
import tensorflow as tf
import numpy as np

y_t = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 0, 1]], dtype=np.float32)
y_p = np.array([[1, 0, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 0, 1]], dtype=np.float32)

def average_recall(y_true, y_pred):
    # Get indexes of both labels and predictions
    labels = np.argmax(y_true, axis=1)
    predictions = np.argmax(y_pred, axis=1)
    # Get confusion matrix from labels and predictions
    confusion_matrix = tf.math.confusion_matrix(labels, predictions).numpy()
    # Get number of all true positives in each class
    all_true_positives = np.diag(confusion_matrix)
    # Get number of all elements in each class
    all_class_sum = np.sum(confusion_matrix, axis=1)
    # Get rid of classes that don't show in batch
    zero_index = np.where(all_class_sum == 0)[0]
    all_true_positives = np.delete(all_true_positives, zero_index)
    all_class_sum = np.delete(all_class_sum, zero_index)

    print("confusion_matrix:\n {},\n all_true_positives:\n {},\n all_class_sum:\n {}".format(
                                            confusion_matrix, all_true_positives, all_class_sum))
    # Average TruePositives / TotalElements wrt all classes that show in batch
    return np.mean(all_true_positives / all_class_sum)

avg_recall = average_recall(y_t, y_p)
print(avg_recall)

输出:

confusion_matrix:
 [[1 0 0 0]
 [1 1 0 0]
 [0 0 0 0]
 [0 0 0 2]],
 all_true_positives:
 [1 1 2],
 all_class_sum:
 [1 2 2]
0.8333333333333334

仅使用tensorflow实现:

import tensorflow as tf

y_t = tf.constant([[1, 0, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 0, 1]], dtype=tf.float32)
y_p = tf.constant([[1, 0, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 0, 1]], dtype=tf.float32)

def average_recall(y_true, y_pred):
    # Get indexes of both labels and predictions
    labels = tf.argmax(y_true, axis=1)
    predictions = tf.argmax(y_pred, axis=1)
    # Get confusion matrix from labels and predictions
    confusion_matrix = tf.math.confusion_matrix(labels, predictions)
    # Get number of all true positives in each class
    all_true_positives = tf.linalg.diag_part(confusion_matrix)
    # Get number of all elements in each class
    all_class_sum = tf.reduce_sum(confusion_matrix, axis=1)
    # Get rid of classes that don't show in batch
    mask = tf.not_equal(all_class_sum, tf.constant(0))
    all_true_positives = tf.boolean_mask(all_true_positives, mask)
    all_class_sum = tf.boolean_mask(all_class_sum, mask)

    print("confusion_matrix:\n {},\n all_true_positives:\n {},\n all_class_sum:\n {}".format(
                                            confusion_matrix, all_true_positives, all_class_sum))
    # Average TruePositives / TotalElements wrt all classes that show in batch
    return tf.reduce_mean(all_true_positives / all_class_sum)

avg_recall = average_recall(y_t, y_p)
print(avg_recall)

输出:

confusion_matrix:
 [[1 0 0 0]
 [1 1 0 0]
 [0 0 0 0]
 [0 0 0 2]],
 all_true_positives:
 [1 1 2],
 all_class_sum:
 [1 2 2]
tf.Tensor(0.8333333333333334, shape=(), dtype=float64)

参考:

tf.math.confusion_matrix

Calculate precision and recall for multiclass classification using confusion matrix