转换 Pytorch -> Onnx -> Tensorflow 的张量格式问题
Tensor format issue from converting Pytorch -> Onnx -> Tensorflow
我对从 Pytorch -> Onnx -> Tensorflow 转换而来的 Tensorflow 模型有疑问。问题是转换后的 Tensorflow 模型需要 Pytorch 格式的输入(批量大小、通道数、高度、宽度),而不是 Tensorflow 格式的输入(批量大小、高度、宽度、通道数)。因此,我无法使用该模型通过 Vitis AI 进行进一步处理。
所以我想问一下,有什么方法可以使用 Onnx、Tensorflow 1 或其他工具将这种 Pytorch 输入格式转换为 Tensorflow 格式吗?
我的代码如下:
Pytorch -> Onnx
from hardnet import hardnet
import torch
import onnx
ckpt = torch.load('../hardnet.pth')
model_state_dict = ckpt['model_state_dict']
optimizer_state_dict = ckpt['optimizer_state_dict']
model = hardnet(11)
model.load_state_dict(model_state_dict)
model.eval()
dummy_input = torch.randn(1, 3, 1080, 1920)
input_names = ['input0']
output_names = ['output0']
output_file = 'hardnet.onnx'
torch.onnx.export(model, dummy_input, output_file, verbose=True,
input_names=input_names, output_names=output_names,
opset_version=11, keep_initializers_as_inputs=True)
onnx_model = onnx.load(output_file)
onnx.checker.check_model(onnx_model)
print('Passed Onnx')
Onnx -> Tensorflow 1(使用 Tensorflow 1.15)
import cv2
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
import onnx
from onnx_tf.backend import prepare
output_file = 'hardnet.onnx'
onnx_model = onnx.load(output_file)
output = prepare(onnx_model)
output.export_graph('hardnet.pb')
tf.compat.v1.disable_eager_execution()
def load_pb(path_to_pb: str):
"""From:
"""
with tf.gfile.GFile(path_to_pb, "rb") as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
with tf.Graph().as_default() as graph:
tf.import_graph_def(graph_def, name='')
return graph
graph = load_pb('hardnet.pb')
input = graph.get_tensor_by_name('input0:0')
output = graph.get_tensor_by_name('output0:0')
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
img = cv2.imread('train_0.jpg', cv2.IMREAD_COLOR)
img = cv2.resize(img, (1920, 1080))
img = img/255
img = img - mean
img = img/std
img = np.expand_dims(img, -1)
# To Pytorch format.
img = np.transpose(img, (3, 2, 0, 1))
img = img
with tf.Session(graph=graph) as sess:
pred = sess.run(output, {input: img})
您可以将您的 Pytorch 模型包装到另一个可以执行您希望在 TensorFlow 中进行转置的模型中。请参阅以下示例:
假设您有以下玩具 NN:
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.rnn = nn.LSTM(10, 20, 2)
def forward(self, x):
h0 = torch.zeros(2, 3, 20)
c0 = torch.zeros(2, 3, 20)
return self.rnn(x, (h0, c0))
典型的 pytorch/tensorflow 输入形状为:
>> pytorch_input = torch.randn(5, 3, 10)
>> tf_input = torch.transpose(pytorch_input, 1, 2)
>> print("PyTorch input shape: ", pytorch_input.shape)
>> print("TensorFlow input shape: ", tf_input.shape)
PyTorch input shape: torch.Size([5, 3, 10])
TensorFlow input shape: torch.Size([5, 10, 3])
现在,首先转置输入然后将转置输入传递给某个模型的包装器:
class NetTensorFlowWrapper(nn.Module):
def __init__(self, main_module: nn.Module):
super(NetTensorFlowWrapper, self).__init__()
self.main_module = main_module
def forward(self, x):
x = torch.transpose(x, 1, 2)
return self.main_module(x)
那么,这是可能的:
net = Net()
net_wrapper = NetTensorFlowWrapper(net)
net(pytorch_input)
net_wrapper(tf_input)
然后,当您最终像之前那样通过 torch.onnx.export
保存您的模型并通过 onnx
包(而不是 torch.onnx
)读取它们的图表时,您将拥有...
- for
Net
- 输入 5x3x10 and no transpose layer
graph torch-jit-export (
%input0[FLOAT, 5x3x10]
{
%76 = Shape(%input0)
%77 = Constant[value = <Scalar Tensor []>]()
- for
NetTensorFlowWrapper
- 输入 5x10x3 和转置层
graph torch-jit-export (
%input0[FLOAT, 5x10x3]
{
%9 = Transpose[perm = [0, 2, 1]](%input0)
%77 = Shape(%9)
%78 = Constant[value = <Scalar Tensor []>]()
...
我对从 Pytorch -> Onnx -> Tensorflow 转换而来的 Tensorflow 模型有疑问。问题是转换后的 Tensorflow 模型需要 Pytorch 格式的输入(批量大小、通道数、高度、宽度),而不是 Tensorflow 格式的输入(批量大小、高度、宽度、通道数)。因此,我无法使用该模型通过 Vitis AI 进行进一步处理。
所以我想问一下,有什么方法可以使用 Onnx、Tensorflow 1 或其他工具将这种 Pytorch 输入格式转换为 Tensorflow 格式吗?
我的代码如下:
Pytorch -> Onnx
from hardnet import hardnet
import torch
import onnx
ckpt = torch.load('../hardnet.pth')
model_state_dict = ckpt['model_state_dict']
optimizer_state_dict = ckpt['optimizer_state_dict']
model = hardnet(11)
model.load_state_dict(model_state_dict)
model.eval()
dummy_input = torch.randn(1, 3, 1080, 1920)
input_names = ['input0']
output_names = ['output0']
output_file = 'hardnet.onnx'
torch.onnx.export(model, dummy_input, output_file, verbose=True,
input_names=input_names, output_names=output_names,
opset_version=11, keep_initializers_as_inputs=True)
onnx_model = onnx.load(output_file)
onnx.checker.check_model(onnx_model)
print('Passed Onnx')
Onnx -> Tensorflow 1(使用 Tensorflow 1.15)
import cv2
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
import onnx
from onnx_tf.backend import prepare
output_file = 'hardnet.onnx'
onnx_model = onnx.load(output_file)
output = prepare(onnx_model)
output.export_graph('hardnet.pb')
tf.compat.v1.disable_eager_execution()
def load_pb(path_to_pb: str):
"""From:
"""
with tf.gfile.GFile(path_to_pb, "rb") as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
with tf.Graph().as_default() as graph:
tf.import_graph_def(graph_def, name='')
return graph
graph = load_pb('hardnet.pb')
input = graph.get_tensor_by_name('input0:0')
output = graph.get_tensor_by_name('output0:0')
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
img = cv2.imread('train_0.jpg', cv2.IMREAD_COLOR)
img = cv2.resize(img, (1920, 1080))
img = img/255
img = img - mean
img = img/std
img = np.expand_dims(img, -1)
# To Pytorch format.
img = np.transpose(img, (3, 2, 0, 1))
img = img
with tf.Session(graph=graph) as sess:
pred = sess.run(output, {input: img})
您可以将您的 Pytorch 模型包装到另一个可以执行您希望在 TensorFlow 中进行转置的模型中。请参阅以下示例:
假设您有以下玩具 NN:
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.rnn = nn.LSTM(10, 20, 2)
def forward(self, x):
h0 = torch.zeros(2, 3, 20)
c0 = torch.zeros(2, 3, 20)
return self.rnn(x, (h0, c0))
典型的 pytorch/tensorflow 输入形状为:
>> pytorch_input = torch.randn(5, 3, 10)
>> tf_input = torch.transpose(pytorch_input, 1, 2)
>> print("PyTorch input shape: ", pytorch_input.shape)
>> print("TensorFlow input shape: ", tf_input.shape)
PyTorch input shape: torch.Size([5, 3, 10])
TensorFlow input shape: torch.Size([5, 10, 3])
现在,首先转置输入然后将转置输入传递给某个模型的包装器:
class NetTensorFlowWrapper(nn.Module):
def __init__(self, main_module: nn.Module):
super(NetTensorFlowWrapper, self).__init__()
self.main_module = main_module
def forward(self, x):
x = torch.transpose(x, 1, 2)
return self.main_module(x)
那么,这是可能的:
net = Net()
net_wrapper = NetTensorFlowWrapper(net)
net(pytorch_input)
net_wrapper(tf_input)
然后,当您最终像之前那样通过 torch.onnx.export
保存您的模型并通过 onnx
包(而不是 torch.onnx
)读取它们的图表时,您将拥有...
- for
Net
- 输入 5x3x10 and no transpose layer
graph torch-jit-export (
%input0[FLOAT, 5x3x10]
{
%76 = Shape(%input0)
%77 = Constant[value = <Scalar Tensor []>]()
- for
NetTensorFlowWrapper
- 输入 5x10x3 和转置层
graph torch-jit-export (
%input0[FLOAT, 5x10x3]
{
%9 = Transpose[perm = [0, 2, 1]](%input0)
%77 = Shape(%9)
%78 = Constant[value = <Scalar Tensor []>]()
...