Pandas:创建具有不同频率的 pandas 日期时间序列

Pandas: Creating a pandas date-time series with different frequencies

我需要创建一个 pandas 列,其日期范围为 2015-12-01 至 2016-12-01,但具有不同的时间频率:

第一天的输出应该如下所示,但是 objective 是在所有日期范围内执行此操作:

1    2015-12-01 02:00:00
2    2015-12-01 03:00:00
3    2015-12-01 04:00:00
4    2015-12-01 05:00:00
5    2015-12-01 06:00:00
6    2015-12-01 07:00:00
7    2015-12-01 07:30:00
8    2015-12-01 08:00:00
9    2015-12-01 08:30:00
10   2015-12-01 09:00:00
11   2015-12-01 09:30:00
12   2015-12-01 10:00:00
13   2015-12-01 10:30:00
14   2015-12-01 11:00:00
15   2015-12-01 11:30:00
16   2015-12-01 12:00:00
17   2015-12-01 12:30:00
18   2015-12-01 13:00:00
19   2015-12-01 13:30:00
20   2015-12-01 14:00:00
21   2015-12-01 14:30:00
22   2015-12-01 15:00:00
23   2015-12-01 15:30:00
24   2015-12-01 16:00:00
25   2015-12-01 16:30:00
26   2015-12-01 17:00:00
27   2015-12-01 17:30:00
28   2015-12-01 18:00:00
29   2015-12-01 18:30:00
30   2015-12-01 19:00:00
31   2015-12-01 19:30:00
32   2015-12-01 20:00:00
33   2015-12-01 20:30:00
34   2015-12-01 21:00:00
35   2015-12-01 21:30:00
36   2015-12-01 22:00:00
37   2015-12-01 23:00:00
38   2015-12-02 00:00:00

为此我使用了:

datetime_series_1 = pd.Series(pd.date_range("2015-12-01 01:00:00", periods=7 , freq="h"))
datetime_series_2 = pd.Series(pd.date_range("2015-12-01 07:30:00", periods=29 , freq="30min"))
datetime_series_3 = pd.Series(pd.date_range("2015-12-01 22:00:00", periods=3 , freq="h"))
datetime_series = pd.concat([datetime_series_1, datetime_series_2, datetime_series_3])
datetime_series.reset_index(inplace=True, drop=True)

print(datetime_series)

但是我不知道如何制作一个可以重现这个的 for 循环,但是在我上面提到的 2015-12-01 到 2016-12-01 的日期范围内。基本上我不知道如何在 for 循环中指示它更改 date_range 方法的字符串中的日期。

如有任何帮助,我们将不胜感激。

谢谢!

这应该可以解决问题:

#Your code
datetime_series_1 = pd.Series(pd.date_range("2015-12-01 01:00:00", periods=7 , freq="h"))
datetime_series_2 = pd.Series(pd.date_range("2015-12-01 07:30:00", periods=29 , freq="30min"))
datetime_series_3 = pd.Series(pd.date_range("2015-12-01 22:00:00", periods=3 , freq="h"))
datetime_series = pd.concat([datetime_series_1, datetime_series_2, datetime_series_3])
datetime_series.reset_index(inplace=True, drop=True)

#loop through the number of days and use a day delta adding to list
list_dates = [datetime_series]*366 #2016 was leap year :)
for i in range(0,366):
    list_dates[i] = datetime_series + pd.Timedelta("{0} days".format(i))

#concat that list at the end
datetime_series = pd.concat(list_dates)
print(datetime_series)