三个列表之间关系的归纳顺序
Induction order for relation between three lists
我正在研究字符串语法理论,但我完全被一个特定的定理挡住了。我尝试过的每一个归纳排序最终都陷入了荒谬和无用的归纳假设,我不确定我错过了什么。
我现在已经多次重读此 "Varying the Induction Hypothesis" 部分,试图理解我做错了什么,但似乎我遵循了他们关于一般性的建议。
简单地说,我很困惑。非常感谢您的指导!
这是我的定义和困难定理的概述。稍后我会给出我的完整脚本。
(* I plan to make these definitions more complex in the future *)
Definition TokenDefinition := String.string.
Definition Token := String.string.
Definition TokenMatches (def: TokenDefinition) (token: Token): Prop := def = token.
Definition TokenPath := list TokenDefinition.
Definition TokenStream := list Token.
Inductive PathMatchesStream: TokenPath -> TokenStream -> Prop :=
| PathMatchesStream_base: forall def token,
TokenMatches def token
-> PathMatchesStream [def] [token]
| PathMatchesStream_append: forall def token path stream,
TokenMatches def token
-> PathMatchesStream path stream
-> PathMatchesStream (def :: path) (token :: stream)
.
(* the problematic theorem *)
Theorem PathMatchesStream_same_if_match_same:
forall a b stream,
PathMatchesStream a stream
-> PathMatchesStream b stream
-> a = b.
Proof.
(* my full script has many failed attempts *)
Qed.
这是我的完整脚本,如果你有 Certified Programming with Dependent Types 的 Cpdt
,它应该可以运行(我非常喜欢他的自动化风格)。
Set Implicit Arguments. Set Asymmetric Patterns.
Require Import List.
Import ListNotations.
Open Scope list_scope.
Require String.
Require Import Cpdt.CpdtTactics.
Require Import PeanoNat Lt.
Definition TokenDefinition := String.string.
Definition Token := String.string.
Definition TokenMatches (def: TokenDefinition) (token: Token): Prop := def = token.
Hint Unfold TokenMatches: core.
Ltac simpl_TokenMatches :=
unfold TokenMatches in *; subst.
Theorem TokenDefinition_match_same_then_same:
forall a b token, TokenMatches a token -> TokenMatches b token -> a = b.
Proof. crush. Qed.
Definition TokenPath := list TokenDefinition.
Definition TokenStream := list Token.
Inductive PathMatchesStream: TokenPath -> TokenStream -> Prop :=
| PathMatchesStream_base: forall def token,
TokenMatches def token
-> PathMatchesStream [def] [token]
| PathMatchesStream_append: forall def token path stream,
TokenMatches def token
-> PathMatchesStream path stream
-> PathMatchesStream (def :: path) (token :: stream)
.
Hint Constructors PathMatchesStream: core.
Ltac invert_PathMatchesStream :=
crush; repeat match goal with
| [ H : TokenMatches _ _ |- _ ] =>
simpl_TokenMatches; crush
| [ H : PathMatchesStream _ _ |- _ ] =>
solve [inversion H; clear H; crush]
end.
Theorem PathMatchesStream_path_not_empty:
forall stream, ~(PathMatchesStream [] stream).
Proof. invert_PathMatchesStream. Qed.
Hint Resolve PathMatchesStream_path_not_empty: core.
Theorem PathMatchesStream_stream_not_empty:
forall path, ~(PathMatchesStream path []).
Proof. invert_PathMatchesStream. Qed.
Hint Resolve PathMatchesStream_stream_not_empty: core.
Theorem PathMatchesStream_length_non_zero:
forall path stream, PathMatchesStream path stream -> 0 < (length path) /\ 0 < (length stream).
Proof. invert_PathMatchesStream. Qed.
Hint Resolve PathMatchesStream_length_non_zero: core.
Theorem PathMatchesStream_same_if_match_same:
forall a b stream,
PathMatchesStream a stream
-> PathMatchesStream b stream
-> a = b.
Proof.
intros a; induction a as [| atok a IHa]; intros b; induction b as [| btok b IHb].
- invert_PathMatchesStream.
- invert_PathMatchesStream.
- invert_PathMatchesStream.
-
induction stream as [| tok stream IHstream].
+ invert_PathMatchesStream.
+
intros Ha Hb.
apply IHa.
(*intros a b stream Ha.
generalize dependent b.
induction Ha.
-
intros b Hb.
unfold TokenMatches in *.
induction Hb.
+
-
intros a.
induction a as [| atok a IHa].
- invert_PathMatchesStream.
-
intros b.
induction b as [| btok b IHb].
-- invert_PathMatchesStream.
--
intros stream.
induction stream as [| tok stream IHstream].
+ invert_PathMatchesStream.
+
intros Ha.
induction Ha; intros Hb; induction Hb.
++ apply IHb.
++ invert_PathMatchesStream.
++
inversion Ha; clear Ha; inversion Hb; clear Hb; invert_PathMatchesStream.
++
apply IHa.
++
*)
(*intros a b stream.
generalize dependent b.
generalize dependent a.
induction stream as [| tok stream IHstream].
- invert_PathMatchesStream.
-
intros a.
induction a as [| atok a IHa].
-- invert_PathMatchesStream.
--
intros b.
induction b as [| btok b IHb].
++ invert_PathMatchesStream.
++
intros Ha Hb.
induction Ha; induction Hb; simpl_TokenMatches.
crush.
invert_PathMatchesStream.*)
Qed.
对于这个定理,其实不需要太花哨的东西。只是一个辅助引理:
Require Import Coq.Lists.List.
Require Import Coq.Strings.String.
Import ListNotations.
(* I plan to make these definitions more complex in the future *)
Definition TokenDefinition := String.string.
Definition Token := String.string.
Definition TokenMatches (def: TokenDefinition) (token: Token): Prop := def = token.
Definition TokenPath := list TokenDefinition.
Definition TokenStream := list Token.
Inductive PathMatchesStream: TokenPath -> TokenStream -> Prop :=
| PathMatchesStream_base: forall def token,
TokenMatches def token
-> PathMatchesStream [def] [token]
| PathMatchesStream_append: forall def token path stream,
TokenMatches def token
-> PathMatchesStream path stream
-> PathMatchesStream (def :: path) (token :: stream)
.
Theorem PathMatchesStream_same_if_match_same_aux :
forall a stream, PathMatchesStream a stream -> a = stream.
Proof.
intros a b H.
now induction H; unfold TokenMatches in *; subst.
Qed.
(* the problematic theorem *)
Theorem PathMatchesStream_same_if_match_same:
forall a b stream,
PathMatchesStream a stream
-> PathMatchesStream b stream
-> a = b.
Proof.
now intros
? ? ? ->%PathMatchesStream_same_if_match_same_aux ->%PathMatchesStream_same_if_match_same_aux.
Qed.
不过,我不知道这是否足以满足您想要的改进...
我正在研究字符串语法理论,但我完全被一个特定的定理挡住了。我尝试过的每一个归纳排序最终都陷入了荒谬和无用的归纳假设,我不确定我错过了什么。
我现在已经多次重读此 "Varying the Induction Hypothesis" 部分,试图理解我做错了什么,但似乎我遵循了他们关于一般性的建议。
简单地说,我很困惑。非常感谢您的指导!
这是我的定义和困难定理的概述。稍后我会给出我的完整脚本。
(* I plan to make these definitions more complex in the future *)
Definition TokenDefinition := String.string.
Definition Token := String.string.
Definition TokenMatches (def: TokenDefinition) (token: Token): Prop := def = token.
Definition TokenPath := list TokenDefinition.
Definition TokenStream := list Token.
Inductive PathMatchesStream: TokenPath -> TokenStream -> Prop :=
| PathMatchesStream_base: forall def token,
TokenMatches def token
-> PathMatchesStream [def] [token]
| PathMatchesStream_append: forall def token path stream,
TokenMatches def token
-> PathMatchesStream path stream
-> PathMatchesStream (def :: path) (token :: stream)
.
(* the problematic theorem *)
Theorem PathMatchesStream_same_if_match_same:
forall a b stream,
PathMatchesStream a stream
-> PathMatchesStream b stream
-> a = b.
Proof.
(* my full script has many failed attempts *)
Qed.
这是我的完整脚本,如果你有 Certified Programming with Dependent Types 的 Cpdt
,它应该可以运行(我非常喜欢他的自动化风格)。
Set Implicit Arguments. Set Asymmetric Patterns.
Require Import List.
Import ListNotations.
Open Scope list_scope.
Require String.
Require Import Cpdt.CpdtTactics.
Require Import PeanoNat Lt.
Definition TokenDefinition := String.string.
Definition Token := String.string.
Definition TokenMatches (def: TokenDefinition) (token: Token): Prop := def = token.
Hint Unfold TokenMatches: core.
Ltac simpl_TokenMatches :=
unfold TokenMatches in *; subst.
Theorem TokenDefinition_match_same_then_same:
forall a b token, TokenMatches a token -> TokenMatches b token -> a = b.
Proof. crush. Qed.
Definition TokenPath := list TokenDefinition.
Definition TokenStream := list Token.
Inductive PathMatchesStream: TokenPath -> TokenStream -> Prop :=
| PathMatchesStream_base: forall def token,
TokenMatches def token
-> PathMatchesStream [def] [token]
| PathMatchesStream_append: forall def token path stream,
TokenMatches def token
-> PathMatchesStream path stream
-> PathMatchesStream (def :: path) (token :: stream)
.
Hint Constructors PathMatchesStream: core.
Ltac invert_PathMatchesStream :=
crush; repeat match goal with
| [ H : TokenMatches _ _ |- _ ] =>
simpl_TokenMatches; crush
| [ H : PathMatchesStream _ _ |- _ ] =>
solve [inversion H; clear H; crush]
end.
Theorem PathMatchesStream_path_not_empty:
forall stream, ~(PathMatchesStream [] stream).
Proof. invert_PathMatchesStream. Qed.
Hint Resolve PathMatchesStream_path_not_empty: core.
Theorem PathMatchesStream_stream_not_empty:
forall path, ~(PathMatchesStream path []).
Proof. invert_PathMatchesStream. Qed.
Hint Resolve PathMatchesStream_stream_not_empty: core.
Theorem PathMatchesStream_length_non_zero:
forall path stream, PathMatchesStream path stream -> 0 < (length path) /\ 0 < (length stream).
Proof. invert_PathMatchesStream. Qed.
Hint Resolve PathMatchesStream_length_non_zero: core.
Theorem PathMatchesStream_same_if_match_same:
forall a b stream,
PathMatchesStream a stream
-> PathMatchesStream b stream
-> a = b.
Proof.
intros a; induction a as [| atok a IHa]; intros b; induction b as [| btok b IHb].
- invert_PathMatchesStream.
- invert_PathMatchesStream.
- invert_PathMatchesStream.
-
induction stream as [| tok stream IHstream].
+ invert_PathMatchesStream.
+
intros Ha Hb.
apply IHa.
(*intros a b stream Ha.
generalize dependent b.
induction Ha.
-
intros b Hb.
unfold TokenMatches in *.
induction Hb.
+
-
intros a.
induction a as [| atok a IHa].
- invert_PathMatchesStream.
-
intros b.
induction b as [| btok b IHb].
-- invert_PathMatchesStream.
--
intros stream.
induction stream as [| tok stream IHstream].
+ invert_PathMatchesStream.
+
intros Ha.
induction Ha; intros Hb; induction Hb.
++ apply IHb.
++ invert_PathMatchesStream.
++
inversion Ha; clear Ha; inversion Hb; clear Hb; invert_PathMatchesStream.
++
apply IHa.
++
*)
(*intros a b stream.
generalize dependent b.
generalize dependent a.
induction stream as [| tok stream IHstream].
- invert_PathMatchesStream.
-
intros a.
induction a as [| atok a IHa].
-- invert_PathMatchesStream.
--
intros b.
induction b as [| btok b IHb].
++ invert_PathMatchesStream.
++
intros Ha Hb.
induction Ha; induction Hb; simpl_TokenMatches.
crush.
invert_PathMatchesStream.*)
Qed.
对于这个定理,其实不需要太花哨的东西。只是一个辅助引理:
Require Import Coq.Lists.List.
Require Import Coq.Strings.String.
Import ListNotations.
(* I plan to make these definitions more complex in the future *)
Definition TokenDefinition := String.string.
Definition Token := String.string.
Definition TokenMatches (def: TokenDefinition) (token: Token): Prop := def = token.
Definition TokenPath := list TokenDefinition.
Definition TokenStream := list Token.
Inductive PathMatchesStream: TokenPath -> TokenStream -> Prop :=
| PathMatchesStream_base: forall def token,
TokenMatches def token
-> PathMatchesStream [def] [token]
| PathMatchesStream_append: forall def token path stream,
TokenMatches def token
-> PathMatchesStream path stream
-> PathMatchesStream (def :: path) (token :: stream)
.
Theorem PathMatchesStream_same_if_match_same_aux :
forall a stream, PathMatchesStream a stream -> a = stream.
Proof.
intros a b H.
now induction H; unfold TokenMatches in *; subst.
Qed.
(* the problematic theorem *)
Theorem PathMatchesStream_same_if_match_same:
forall a b stream,
PathMatchesStream a stream
-> PathMatchesStream b stream
-> a = b.
Proof.
now intros
? ? ? ->%PathMatchesStream_same_if_match_same_aux ->%PathMatchesStream_same_if_match_same_aux.
Qed.
不过,我不知道这是否足以满足您想要的改进...