如何在 HoloViews/Bokeh 中的绘图之间创建带有小部件(选择器)和交互性(点击流)的仪表板?
How to create a dashboard with widgets (selector) and interactivity (tap stream) between plots in HoloViews/Bokeh?
我正在尝试创建一个包含两个图(热图和折线图)和一个小部件(select或)的仪表板:
- 当您 select 从小部件中选择一个选项时,两个图都会更新;
- 当您点击第一个绘图时,第二个绘图会根据点击信息进行更新。
目前我正尝试在 HoloViews 中进行。看起来这应该很容易做到,但我不知何故无法理解它。
下面的代码显示了它应该是什么样子。但是,selector 没有以任何方式连接到仪表板,因为我不知道该怎么做。
import pandas as pd
import numpy as np
import panel as pn
import holoviews as hv
hv.extension('bokeh')
def create_test_df(k_features, n_tickers=5, m_windows=5):
start_date = pd.Timestamp('01-01-2020')
window_len = pd.Timedelta(days=1)
cols = ['window_dt', 'ticker'] + [f'feature_{i}' for i in range(k_features)]
data = {c: [] for c in cols}
for w in range(m_windows):
window_dt = start_date + w*window_len
for t in range(n_tickers):
ticker = f'ticker_{t}'
data['window_dt'].append(window_dt)
data['ticker'].append(ticker)
for f in range(k_features):
data[f'feature_{f}'].append(np.random.rand())
return pd.DataFrame(data)
k_features = 3
features = [f'feature_{i}' for i in range(k_features)]
df = create_test_df(k_features)
selector = pn.widgets.Select(options=features)
heatmap = hv.HeatMap(df[['window_dt', 'ticker', f'{selector.value}']])
posxy = hv.streams.Tap(source=heatmap, x='01-01-2020', y='ticker_4')
def tap_heatmap(x, y):
scalar = np.random.randn()
x = np.linspace(-2*np.pi, 2*np.pi, 100)
data = list(zip(x, np.sin(x*scalar)))
return hv.Curve(data)
pn.Row(heatmap, hv.DynamicMap(tap_heatmap, streams=[posxy]), selector)
好的,我终于明白了。事实证明它很简单(正如预期的那样)但不是很直观。基本上,应该使用不同的方法来实现选择器(下拉菜单)。此类示例的工作代码如下:
import pandas as pd
import numpy as np
import panel as pn
import holoviews as hv
hv.extension('bokeh')
def create_test_df(k_features, n_tickers=5, m_windows=5):
start_date = pd.Timestamp('01-01-2020')
window_len = pd.Timedelta(days=1)
cols = ['window_dt', 'ticker'] + [f'feature_{i}' for i in range(k_features)]
data = {c: [] for c in cols}
for w in range(m_windows):
window_dt = start_date + w*window_len
for t in range(n_tickers):
ticker = f'ticker_{t}'
data['window_dt'].append(window_dt)
data['ticker'].append(ticker)
for f in range(k_features):
data[f'feature_{f}'].append(np.random.rand())
return pd.DataFrame(data)
def load_heatmap(feature):
return hv.HeatMap(df[['window_dt', 'ticker', f'{feature}']])
def tap_heatmap(x, y):
scalar = np.random.randn()
x = np.linspace(-2*np.pi, 2*np.pi, 100)
data = list(zip(x, np.sin(x*scalar)))
return hv.Curve(data)
k_features = 3
features = [f'feature_{i}' for i in range(k_features)]
df = create_test_df(k_features)
heatmap_dmap = hv.DynamicMap(load_heatmap, kdims='Feature').redim.values(Feature=features)
posxy = hv.streams.Tap(source=heatmap_dmap, x='01-01-2020', y='ticker_0')
sidegraph_dmap = hv.DynamicMap(tap_heatmap, streams=[posxy])
pn.Row(heatmap_dmap, sidegraph_dmap)
我正在尝试创建一个包含两个图(热图和折线图)和一个小部件(select或)的仪表板:
- 当您 select 从小部件中选择一个选项时,两个图都会更新;
- 当您点击第一个绘图时,第二个绘图会根据点击信息进行更新。
目前我正尝试在 HoloViews 中进行。看起来这应该很容易做到,但我不知何故无法理解它。
下面的代码显示了它应该是什么样子。但是,selector 没有以任何方式连接到仪表板,因为我不知道该怎么做。
import pandas as pd
import numpy as np
import panel as pn
import holoviews as hv
hv.extension('bokeh')
def create_test_df(k_features, n_tickers=5, m_windows=5):
start_date = pd.Timestamp('01-01-2020')
window_len = pd.Timedelta(days=1)
cols = ['window_dt', 'ticker'] + [f'feature_{i}' for i in range(k_features)]
data = {c: [] for c in cols}
for w in range(m_windows):
window_dt = start_date + w*window_len
for t in range(n_tickers):
ticker = f'ticker_{t}'
data['window_dt'].append(window_dt)
data['ticker'].append(ticker)
for f in range(k_features):
data[f'feature_{f}'].append(np.random.rand())
return pd.DataFrame(data)
k_features = 3
features = [f'feature_{i}' for i in range(k_features)]
df = create_test_df(k_features)
selector = pn.widgets.Select(options=features)
heatmap = hv.HeatMap(df[['window_dt', 'ticker', f'{selector.value}']])
posxy = hv.streams.Tap(source=heatmap, x='01-01-2020', y='ticker_4')
def tap_heatmap(x, y):
scalar = np.random.randn()
x = np.linspace(-2*np.pi, 2*np.pi, 100)
data = list(zip(x, np.sin(x*scalar)))
return hv.Curve(data)
pn.Row(heatmap, hv.DynamicMap(tap_heatmap, streams=[posxy]), selector)
好的,我终于明白了。事实证明它很简单(正如预期的那样)但不是很直观。基本上,应该使用不同的方法来实现选择器(下拉菜单)。此类示例的工作代码如下:
import pandas as pd
import numpy as np
import panel as pn
import holoviews as hv
hv.extension('bokeh')
def create_test_df(k_features, n_tickers=5, m_windows=5):
start_date = pd.Timestamp('01-01-2020')
window_len = pd.Timedelta(days=1)
cols = ['window_dt', 'ticker'] + [f'feature_{i}' for i in range(k_features)]
data = {c: [] for c in cols}
for w in range(m_windows):
window_dt = start_date + w*window_len
for t in range(n_tickers):
ticker = f'ticker_{t}'
data['window_dt'].append(window_dt)
data['ticker'].append(ticker)
for f in range(k_features):
data[f'feature_{f}'].append(np.random.rand())
return pd.DataFrame(data)
def load_heatmap(feature):
return hv.HeatMap(df[['window_dt', 'ticker', f'{feature}']])
def tap_heatmap(x, y):
scalar = np.random.randn()
x = np.linspace(-2*np.pi, 2*np.pi, 100)
data = list(zip(x, np.sin(x*scalar)))
return hv.Curve(data)
k_features = 3
features = [f'feature_{i}' for i in range(k_features)]
df = create_test_df(k_features)
heatmap_dmap = hv.DynamicMap(load_heatmap, kdims='Feature').redim.values(Feature=features)
posxy = hv.streams.Tap(source=heatmap_dmap, x='01-01-2020', y='ticker_0')
sidegraph_dmap = hv.DynamicMap(tap_heatmap, streams=[posxy])
pn.Row(heatmap_dmap, sidegraph_dmap)