查找尺寸小于 x 的特定颜色的色块。 (x = 像素数)
Finding patches of certain colors with a size smaller than x. (x =number of pixels)
分段
蓝色面具
在此示例中,您可以看到分段和显示分段具有蓝色 (0,0,155,255) 的所有位置的蒙版。
有一些蓝色噪音,表示为绿色和红色区域之间以及绿色和橙色区域之间的小蓝色条纹。
如果分割的区域小于 50 像素,我想删除蓝色分割,并用蓝色区域周围的颜色替换它,而不混合任何颜色。最终结果应该只包含6种原始颜色。
理想情况下,我想对图像中的所有 6 种颜色执行此过程。
我该怎么做,是否有任何内置函数可以做到这一点?
我会根据每种颜色在(阈值)掩码上应用 findContours,并收集分段表示。然后像处理蓝色蒙版一样分别渲染每种颜色。
例如过滤方式:area = cv2.contourArea(cnt) 标记小区域。
即 - 迭代轮廓并比较 if area < ... --> collect:
对于每个 selected 小区域,您可以检查周围环境,哪些颜色是相邻的。这可以做到,例如通过从轮廓(它是一个坐标列表)中采样一些点并在各个方向扫描并比较颜色直到找到不同的颜色。找到极值点并从那里开始可能会有所帮助,见下文:
#... produce masked image for each color, put in masks = [] ...
#... colors = [] ... per each mask/segmented region etc.
for m in masks:
bw = cv2.cvtColor(m,cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(bw,127,255,0) # or whatever appropriate params
contours, hierarchy = cv2.findContours(thresh, 1, 2)
streaks = []
for c in contours:
if cv2.contourArea(c) < minSize:
streaks.append(c)
# or process directly, maybe a function here, or could simplify the contour:
# reduce the number of points:
# epsilon = 0.1*cv2.arcLength(cnt,True)
# approx = cv2.approxPolyDP(cnt,epsilon,True)
for x,y in c: # or on the approx or with skipping ... or one point may be enough
# check with offset... Scan in some direction until black/different color or pointPolygonTest() is False etc.
'''
可以找到可能使扫描更有效的极值点 - c 是轮廓:
leftmost = tuple(c[c[:,:,].argmin()][0]
rightmost = tuple(c[c[:,:,].argmax()][0]
所以有了轮廓的最左边坐标,扫描应该向左,对于最右边 - 向右等。当小区域靠近图像边界时存在边界情况,则搜索应该遍历方向。
然后您可以将这些小区域的颜色更改为相邻区域的颜色 - 在表示中(一些 class 或元组)或直接在图像中使用 cv2.fillPoly(... ). fillPoly 可用于重建分割图像。
可能有几个不同颜色的相邻区域,所以如果哪种颜色对 select 很重要,则需要更多规范,例如比较这些相邻区域的面积并 selecting bigger/smaller 一个,随机等
寻找合适的算法来填充小轮廓,物体周围的颜色似乎太复杂所以我想出了(在 Todor 的帮助下)这个:
import os
import numpy as np
from PIL import Image
import time
import cv2
from joblib import Parallel, delayed
root = 'Mask/'
files = os.listdir(root)
def despeckling(file):
#for file in files: -> if you don't want to use multiple threads to compute this.
imgpath = os.path.join(root, file)
img1 = Image.open(imgpath) #opening file
img1 = img1.convert("RGB") #convert to rgb
pixels1 = img1.load()
# blue 2 green
newimgarray0 = np.asarray(img1)
for y in range(img1.size[1]): #returning an binary img with...
for x in range(img1.size[0]):
if pixels1 [x,y] != (0, 0, 155): #the color you want to isolate, and ...
pixels1[x,y] = (0,0,0) #the background color (black)
img1arr = np.asarray(img1)
grayarr1 = cv2.cvtColor(img1arr, cv2.COLOR_RGB2GRAY) # you have to convert to grayscale as cv2.find contours can't process anything else
contours1, hierachy = cv2.findContours(grayarr1,cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE) # returning the contours with out any extrapolation (cv2.CHAIN_APPROX_NONE) , disregarding hierachy (RETR_LIST)
shapes1 = [] # empty array to store the Contours in
for contour1 in contours1:
if cv2.contourArea(contour1) < 1000: # specifying the minimum contour area( here it is 1000)
shapes1.append(contour1) # storing the contours in the shapes1
newimgarray1 = cv2.fillPoly(newimgarray0, shapes1, color=(0,174,0)) # filling the contours, which are deemed to smal (<1000) with next color inline
newimg1 = Image.fromarray((newimgarray1))
#repeat for all colors until no small patch is left.
newdir = 'despeckled/'
newimg1.save(os.path.join(newdir, file))
run = Parallel(n_jobs=-1) (delayed(despeckling)(file) for file in files) #parallisation of the process
因为我有 6 种颜色,这将是我要经历的顺序
蓝色->绿色,绿色->橙色,橙色->红色,红色->紫色,紫色->蓝色,蓝色->绿色,绿色->橙色,橙色->红色,红色->紫色
这样我可以确保所有小补丁现在都属于一个更大的补丁。
肯定有更好的方法来做到这一点,但这对我来说是最简单的,因为我还是个菜鸟。 :D
在此示例中,您可以看到分段和显示分段具有蓝色 (0,0,155,255) 的所有位置的蒙版。 有一些蓝色噪音,表示为绿色和红色区域之间以及绿色和橙色区域之间的小蓝色条纹。 如果分割的区域小于 50 像素,我想删除蓝色分割,并用蓝色区域周围的颜色替换它,而不混合任何颜色。最终结果应该只包含6种原始颜色。
理想情况下,我想对图像中的所有 6 种颜色执行此过程。
我该怎么做,是否有任何内置函数可以做到这一点?
我会根据每种颜色在(阈值)掩码上应用 findContours,并收集分段表示。然后像处理蓝色蒙版一样分别渲染每种颜色。
例如过滤方式:area = cv2.contourArea(cnt) 标记小区域。
即 - 迭代轮廓并比较 if area < ... --> collect:
对于每个 selected 小区域,您可以检查周围环境,哪些颜色是相邻的。这可以做到,例如通过从轮廓(它是一个坐标列表)中采样一些点并在各个方向扫描并比较颜色直到找到不同的颜色。找到极值点并从那里开始可能会有所帮助,见下文:
#... produce masked image for each color, put in masks = [] ...
#... colors = [] ... per each mask/segmented region etc.
for m in masks:
bw = cv2.cvtColor(m,cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(bw,127,255,0) # or whatever appropriate params
contours, hierarchy = cv2.findContours(thresh, 1, 2)
streaks = []
for c in contours:
if cv2.contourArea(c) < minSize:
streaks.append(c)
# or process directly, maybe a function here, or could simplify the contour:
# reduce the number of points:
# epsilon = 0.1*cv2.arcLength(cnt,True)
# approx = cv2.approxPolyDP(cnt,epsilon,True)
for x,y in c: # or on the approx or with skipping ... or one point may be enough
# check with offset... Scan in some direction until black/different color or pointPolygonTest() is False etc.
'''
可以找到可能使扫描更有效的极值点 - c 是轮廓:
leftmost = tuple(c[c[:,:,].argmin()][0]
rightmost = tuple(c[c[:,:,].argmax()][0]
所以有了轮廓的最左边坐标,扫描应该向左,对于最右边 - 向右等。当小区域靠近图像边界时存在边界情况,则搜索应该遍历方向。
然后您可以将这些小区域的颜色更改为相邻区域的颜色 - 在表示中(一些 class 或元组)或直接在图像中使用 cv2.fillPoly(... ). fillPoly 可用于重建分割图像。
可能有几个不同颜色的相邻区域,所以如果哪种颜色对 select 很重要,则需要更多规范,例如比较这些相邻区域的面积并 selecting bigger/smaller 一个,随机等
寻找合适的算法来填充小轮廓,物体周围的颜色似乎太复杂所以我想出了(在 Todor 的帮助下)这个:
import os
import numpy as np
from PIL import Image
import time
import cv2
from joblib import Parallel, delayed
root = 'Mask/'
files = os.listdir(root)
def despeckling(file):
#for file in files: -> if you don't want to use multiple threads to compute this.
imgpath = os.path.join(root, file)
img1 = Image.open(imgpath) #opening file
img1 = img1.convert("RGB") #convert to rgb
pixels1 = img1.load()
# blue 2 green
newimgarray0 = np.asarray(img1)
for y in range(img1.size[1]): #returning an binary img with...
for x in range(img1.size[0]):
if pixels1 [x,y] != (0, 0, 155): #the color you want to isolate, and ...
pixels1[x,y] = (0,0,0) #the background color (black)
img1arr = np.asarray(img1)
grayarr1 = cv2.cvtColor(img1arr, cv2.COLOR_RGB2GRAY) # you have to convert to grayscale as cv2.find contours can't process anything else
contours1, hierachy = cv2.findContours(grayarr1,cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE) # returning the contours with out any extrapolation (cv2.CHAIN_APPROX_NONE) , disregarding hierachy (RETR_LIST)
shapes1 = [] # empty array to store the Contours in
for contour1 in contours1:
if cv2.contourArea(contour1) < 1000: # specifying the minimum contour area( here it is 1000)
shapes1.append(contour1) # storing the contours in the shapes1
newimgarray1 = cv2.fillPoly(newimgarray0, shapes1, color=(0,174,0)) # filling the contours, which are deemed to smal (<1000) with next color inline
newimg1 = Image.fromarray((newimgarray1))
#repeat for all colors until no small patch is left.
newdir = 'despeckled/'
newimg1.save(os.path.join(newdir, file))
run = Parallel(n_jobs=-1) (delayed(despeckling)(file) for file in files) #parallisation of the process
因为我有 6 种颜色,这将是我要经历的顺序
蓝色->绿色,绿色->橙色,橙色->红色,红色->紫色,紫色->蓝色,蓝色->绿色,绿色->橙色,橙色->红色,红色->紫色
这样我可以确保所有小补丁现在都属于一个更大的补丁。
肯定有更好的方法来做到这一点,但这对我来说是最简单的,因为我还是个菜鸟。 :D