带约束的产品特性优化

Product feature optimization with constraints

我训练了一个 Lightgbm 模型来学习对数据集进行排序。该模型预测样本的相关性得分。所以预测越高越好。现在模型已经学习了,我想找到一些能给我最高预测分数的特征的最佳值。

所以,假设我有功能 u,v,w,x,y,z,我想优化的功能是 x,y,z

maximize f(u,v,w,x,y,z) w.r.t features x,y,z where f is a lightgbm model
subject to constraints : 
y = Ax + b
z = 4 if y < thresh_a else 4-0.5 if y >= thresh_b  else 4-0.3
thresh_m < x <= thresh_n

数字是随机组成的,但约束是线性的。

Objective 关于 x 的函数如下所示:

所以这个函数非常尖锐,不流畅。我也没有梯度信息,因为 f 是一个 lightgbm 模型。

使用 我写下了以下 class :

class ProductOptimization:
    
    def __init__(self, estimator,  features_to_change, row_fixed_values, 
                 bnds=None):
        self.estimator = estimator 
        self.features_to_change = features_to_change
        self.row_fixed_values = row_fixed_values
        self.bounds = bnds
                    
    def get_sample(self, x):
        
        new_values = {k:v for k,v in zip(self.features_to_change, x)}
        
        return self.row_fixed_values.replace({k:{self.row_fixed_values[k].iloc[0]:v} 
                                  for k,v in new_values.items()})
    
    def _call_model(self, x):
        
        pred = self.estimator.predict(self.get_sample(x))
        return pred[0]
    
    def constraint1(self, vector):
        x = vector[0]
        y = vector[2]
        return # some float value
    
    def constraint2(self, vector):
        x = vector[0]
        y = vector[3] 
        return #some float value
    
    def optimize_slsqp(self, initial_values):
        
        con1 = {'type': 'eq', 'fun': self.constraint1}
        con2 = {'type': 'eq', 'fun': self.constraint2}
        cons = ([con1,con2])

        
        result = minimize(fun=self._call_model,
                          x0=np.array(initial_values),
                          method='SLSQP',
                          bounds=self.bounds,
                          constraints=cons)
        return result

我得到的结果总是围绕着最初的猜测。我认为这是因为函数的非平滑性以及缺少任何对 SLSQP 优化器很重要的梯度信息。有什么建议我应该如何处理这类问题?

自从我上次写了一些严肃的代码以来已经过去了很长时间,所以如果我不完全清楚每件事的作用,我深表歉意,请随时要求更多解释

进口:

from sklearn.ensemble import GradientBoostingRegressor
import numpy as np
from scipy.optimize import minimize
from copy import copy

首先,我定义了一个新的 class,它允许我轻松地重新定义值。这个 class 有 5 个输入:

  1. 值:这是 'base' 值。在你的等式 y=Ax + b 中,它是 b 部分
  2. 最小值:这是此类型将评估为的最小值
  3. 最大值:这是此类型将评估为
  4. 的最大值
  5. 乘数:第一个棘手的。它是其他 InputType 对象的列表。第一个是输入类型,第二个是乘法器。在你的例子中 y=Ax +b 你会得到 [[x, A]],如果等式是 y=Ax + Bz + Cd 它将是 [[x, A], [z, B], [d, C]]
  6. 关系:最棘手的一个。它也是其他 InputType 对象的列表,它有四个项目:第一个是输入类型,第二个定义它是否是您使用 min 的上边界,如果它是您使用 max 的下边界。列表中的第三项是边界的值,第四项是与之相连的输出值

当心 如果您将输入值定义得太奇怪,我确定会有奇怪的行为。

class InputType:

    def __init__(self, value=0, minimum=-1e99, maximum=1e99, multipliers=[], relations=[]):
        """

        :param float value: base value
        :param float minimum: value can never be lower than x
        :param float maximum: value can never be higher than y
        :param multipliers: [[InputType, multiplier], [InputType, multiplier]]
        :param relations: [[InputType, min, threshold, output_value], [InputType, max, threshold, output_value]]
        """
        self.val = value
        self.min = minimum
        self.max = maximum
        self.multipliers = multipliers
        self.relations = relations

    def reset_val(self, value):
        self.val = value

    def evaluate(self):
        """
        - relations to other variables are done first if there are none then the rest is evaluated

        - at most self.max
        - at least self.min
        - self.val + i_x * w_x
        i_x is input i, w_x is multiplier (weight) of i
        """
        for term, min_max, value, output_value in self.relations:
            # check for each term if it falls outside of the expected terms
            if min_max(term.evaluate(), value) != term.evaluate():
                return self.return_value(output_value)

        output_value = self.val + sum([i[0].evaluate() * i[1] for i in self.multipliers])
        return self.return_value(output_value)

    def return_value(self, output_value):
        return min(self.max, max(self.min, output_value))

使用它,您可以修复从优化器发送的输入类型,如 _call_model:

所示
class Example:

    def __init__(self, lst_args):
        self.lst_args = lst_args

        self.X = np.random.random((10000, len(lst_args)))
        self.y = self.get_y()
        self.clf = GradientBoostingRegressor()
        self.fit()

    def get_y(self):
        # sum of squares, is minimum at x = [0, 0, 0, 0, 0 ... ]
        return np.array([[self._func(i)] for i in self.X])

    def _func(self, i):
        return sum(i * i)

    def fit(self):
        self.clf.fit(self.X, self.y)

    def optimize(self):
        x0 = [0.5 for i in self.lst_args]
        initial_simplex = self._get_simplex(x0, 0.1)
        result = minimize(fun=self._call_model,
                          x0=np.array(x0),
                          method='Nelder-Mead',
                          options={'xatol': 0.1,
                                   'initial_simplex': np.array(initial_simplex)})
        return result

    def _get_simplex(self, x0, step):
        simplex = []
        for i in range(len(x0)):
            point = copy(x0)
            point[i] -= step
            simplex.append(point)

        point2 = copy(x0)
        point2[-1] += step
        simplex.append(point2)
        return simplex

    def _call_model(self, x):
        print(x, type(x))
        for i, value in enumerate(x):
            self.lst_args[i].reset_val(value)

        input_x = np.array([i.evaluate() for i in self.lst_args])
        prediction = self.clf.predict([input_x])
        return prediction[0]

我可以如下定义你的问题(一定要按照与最终列表相同的顺序定义输入,否则并不是所有的值都会在优化器中正确更新!):

A = 5
b = 2
thresh_a = 5
thresh_b = 10
thresh_c = 10.1
thresh_m = 4
thresh_n = 6

u = InputType()
v = InputType()
w = InputType()
x = InputType(minimum=thresh_m, maximum=thresh_n)
y = InputType(value = b, multipliers=([[x, A]]))
z = InputType(relations=[[y, max, thresh_a, 4], [y, min, thresh_b, 3.5], [y, max, thresh_c, 3.7]])


example = Example([u, v, w, x, y, z])

调用结果:

result = example.optimize()
for i, value in enumerate(result.x):
    example.lst_args[i].reset_val(value)
print(f"final values are at: {[i.evaluate() for i in example.lst_args]}: {result.fun)}")