残差散点图的线性回归循环
linear regression loop for residuals scatterplot
我正在运行进行线性回归模拟,每个模型根据“标签”变量的不同值。我可以为每个模型打印指标,但我无法 运行 每个模型的不同散点图。所有图表都在单个散点图中再现。我想 运行 每个模型的指标和不同的散点图
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
from scipy.stats import binom
from scipy.stats import norm
import numpy as np
from scipy.stats import norm
# generate random numbers from N(0,1)
x = norm.rvs(size=10000,loc=0,scale=1)
y = norm.rvs(size=10000,loc=0,scale=1)
z = binom.rvs(n=10,p=0.8,size=10000)
df = pd.DataFrame(data={'v1':x.flatten(),'target':y.flatten(),'label':z.flatten()})
classes=df.label.unique().tolist()
results = []
for name in classes:
df_subset=df.loc[df['label']==name]
reg = LinearRegression()
reg.fit(df_subset['v1'].values.reshape(-1, 1), df_subset["target"].values.reshape(-1, 1))
predictions = reg.predict(df_subset['v1'].values.reshape(-1, 1))
res=np.mean((predictions - df_subset["target"].values.reshape(-1, 1)) ** 2)
results.append(res)
msg = "Metric model %s: %f " % (name, res)
print(msg)
df_subset['pred']=predictions
sns.scatterplot(data=df_subset, x='pred', y="target")
在sns剧情之前新建一个人物就好了。
plt.figure()
<---
在 sns plot 之后执行 plt.show()
以便您可以在每个 plot 之前显示打印语句(模型指标)。
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
from scipy.stats import binom
from scipy.stats import norm
import numpy as np
import seaborn as sns
from scipy.stats import norm
# generate random numbers from N(0,1)
x = norm.rvs(size=10000,loc=0,scale=1)
y = norm.rvs(size=10000,loc=0,scale=1)
z = binom.rvs(n=10,p=0.8,size=10000)
df = pd.DataFrame(data={'v1':x.flatten(),'target':y.flatten(),'label':z.flatten()})
classes=df.label.unique().tolist()
results = []
for name in classes:
df_subset=df.loc[df['label']==name]
reg = LinearRegression()
reg.fit(df_subset['v1'].values.reshape(-1, 1), df_subset["target"].values.reshape(-1, 1))
predictions = reg.predict(df_subset['v1'].values.reshape(-1, 1))
res=np.mean((predictions - df_subset["target"].values.reshape(-1, 1)) ** 2)
results.append(res)
msg = "Metric model %s: %f " % (name, res)
print(msg)
plt.figure() #<-----------here
df_subset['pred']=predictions
sns.scatterplot(data=df_subset, x='pred', y="target")
plt.show() #<------------ here
我会建议安装 matplotlib 库然后
import matplotlib.pyplot as plt
y = 0
.
.
.
#inside your for loop
plot = sns.scatterplot(data=df_subset, x='pred', y="target")
plt.savefig('plot_' + str(y))
plt.clf()
我正在运行进行线性回归模拟,每个模型根据“标签”变量的不同值。我可以为每个模型打印指标,但我无法 运行 每个模型的不同散点图。所有图表都在单个散点图中再现。我想 运行 每个模型的指标和不同的散点图
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
from scipy.stats import binom
from scipy.stats import norm
import numpy as np
from scipy.stats import norm
# generate random numbers from N(0,1)
x = norm.rvs(size=10000,loc=0,scale=1)
y = norm.rvs(size=10000,loc=0,scale=1)
z = binom.rvs(n=10,p=0.8,size=10000)
df = pd.DataFrame(data={'v1':x.flatten(),'target':y.flatten(),'label':z.flatten()})
classes=df.label.unique().tolist()
results = []
for name in classes:
df_subset=df.loc[df['label']==name]
reg = LinearRegression()
reg.fit(df_subset['v1'].values.reshape(-1, 1), df_subset["target"].values.reshape(-1, 1))
predictions = reg.predict(df_subset['v1'].values.reshape(-1, 1))
res=np.mean((predictions - df_subset["target"].values.reshape(-1, 1)) ** 2)
results.append(res)
msg = "Metric model %s: %f " % (name, res)
print(msg)
df_subset['pred']=predictions
sns.scatterplot(data=df_subset, x='pred', y="target")
在sns剧情之前新建一个人物就好了。
plt.figure()
<---
在 sns plot 之后执行 plt.show()
以便您可以在每个 plot 之前显示打印语句(模型指标)。
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
from scipy.stats import binom
from scipy.stats import norm
import numpy as np
import seaborn as sns
from scipy.stats import norm
# generate random numbers from N(0,1)
x = norm.rvs(size=10000,loc=0,scale=1)
y = norm.rvs(size=10000,loc=0,scale=1)
z = binom.rvs(n=10,p=0.8,size=10000)
df = pd.DataFrame(data={'v1':x.flatten(),'target':y.flatten(),'label':z.flatten()})
classes=df.label.unique().tolist()
results = []
for name in classes:
df_subset=df.loc[df['label']==name]
reg = LinearRegression()
reg.fit(df_subset['v1'].values.reshape(-1, 1), df_subset["target"].values.reshape(-1, 1))
predictions = reg.predict(df_subset['v1'].values.reshape(-1, 1))
res=np.mean((predictions - df_subset["target"].values.reshape(-1, 1)) ** 2)
results.append(res)
msg = "Metric model %s: %f " % (name, res)
print(msg)
plt.figure() #<-----------here
df_subset['pred']=predictions
sns.scatterplot(data=df_subset, x='pred', y="target")
plt.show() #<------------ here
我会建议安装 matplotlib 库然后
import matplotlib.pyplot as plt
y = 0
.
.
.
#inside your for loop
plot = sns.scatterplot(data=df_subset, x='pred', y="target")
plt.savefig('plot_' + str(y))
plt.clf()