添加从另一个库生成的图像作为 matplotlib 中的插图
Adding image generated from another library as inset in matplotlib
我已经使用 vedo
库生成了一个网络图形,我正在尝试将其作为插图添加到 matplotlib
中生成的图形中
import networkx as nx
import matplotlib.pyplot as plt
from vedo import *
from matplotlib.offsetbox import OffsetImage, AnnotationBbox
G = nx.gnm_random_graph(n=10, m=15, seed=1)
nxpos = nx.spring_layout(G, dim=3, seed=1)
nxpts = [nxpos[pt] for pt in sorted(nxpos)]
nx_lines = [(nxpts[i], nxpts[j]) for i, j in G.edges()]
pts = Points(nxpts, r=12)
edg = Lines(nx_lines).lw(2)
# node values
values = [[1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[30, 80, 10, 79, 70, 60, 75, 78, 65, 10],
[1, .30, .10, .79, .70, .60, .75, .78, .65, .90]]
time = [0.0, 0.1, 0.2] # in seconds
vplt = Plotter(N=1)
pts1 = pts.cmap('Blues', values[0])
vplt.show(
pts1, edg,
axes=False,
bg='white',
at=0,
interactive=False,
zoom=1.5
).screenshot("network.png")
ax = plt.subplot(111)
ax.plot(
[1, 2, 3], [1, 2, 3],
'go-',
label='line 1',
linewidth=2
)
arr_img = vplt.screenshot(returnNumpy=True, scale=1)
im = OffsetImage(arr_img, zoom=0.25)
ab = AnnotationBbox(im, (1, 0), xycoords='axes fraction', box_alignment=(1.1, -0.1), frameon=False)
ax.add_artist(ab)
plt.show()
ax.figure.savefig(
"output.svg",
transparent=True,
dpi=600,
bbox_inches="tight"
)
插图中的图像分辨率太低。关于如何在不损失分辨率的情况下添加插图的建议将非常有帮助。
编辑:
下面发布的答案适用于添加 2D 网络,但我仍在寻找对在插图中添加 3D 网络有用的方法。
我不熟悉 vedo
,但一般过程是创建一个 inset_axis
并使用 imshow
绘制图像。但是,您的代码使用的 networkx
具有 matplotlib
绑定,您可以直接执行此操作而无需 vedo
编辑:为 3d 绘图编辑的代码
import networkx as nx
import matplotlib.pyplot as plt
G = nx.gnm_random_graph(n=10, m=15, seed=1)
nxpos = nx.spring_layout(G, dim=3, seed=1)
nxpts = [nxpos[pt] for pt in sorted(nxpos)]
nx_lines = [(nxpts[i], nxpts[j]) for i, j in G.edges()]
# node values
values = [[1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[30, 80, 10, 79, 70, 60, 75, 78, 65, 10],
[1, .30, .10, .79, .70, .60, .75, .78, .65, .90]]
time = [0.0, 0.1, 0.2] # in seconds
fig, ax = plt.subplots()
ax.plot(
[1, 2, 3], [1, 2, 3],
'go-',
label='line 1',
linewidth=2
)
from mpl_toolkits.mplot3d import (Axes3D)
from matplotlib.transforms import Bbox
rect = [.6, 0, .5, .5]
bbox = Bbox.from_bounds(*rect)
inax = fig.add_axes(bbox, projection = '3d')
# inax = add_inset_axes(,
# ax_target = ax,
# fig = fig, projection = '3d')
# inax.axis('off')
# set angle
angle = 25
inax.view_init(10, angle)
# hide axes, make transparent
# inax.set_facecolor('none')
# inax.grid('off')
import numpy as np
# plot 3d
seen = set()
for i, j in G.edges():
x = np.stack((nxpos[i], nxpos[j]))
inax.plot(*x.T, color = 'k')
if i not in seen:
inax.scatter(*x[0], color = 'skyblue')
seen.add(i)
if j not in seen:
inax.scatter(*x[1], color = "skyblue")
seen.add(j)
fig.show()
我已经使用 vedo
库生成了一个网络图形,我正在尝试将其作为插图添加到 matplotlib
import networkx as nx
import matplotlib.pyplot as plt
from vedo import *
from matplotlib.offsetbox import OffsetImage, AnnotationBbox
G = nx.gnm_random_graph(n=10, m=15, seed=1)
nxpos = nx.spring_layout(G, dim=3, seed=1)
nxpts = [nxpos[pt] for pt in sorted(nxpos)]
nx_lines = [(nxpts[i], nxpts[j]) for i, j in G.edges()]
pts = Points(nxpts, r=12)
edg = Lines(nx_lines).lw(2)
# node values
values = [[1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[30, 80, 10, 79, 70, 60, 75, 78, 65, 10],
[1, .30, .10, .79, .70, .60, .75, .78, .65, .90]]
time = [0.0, 0.1, 0.2] # in seconds
vplt = Plotter(N=1)
pts1 = pts.cmap('Blues', values[0])
vplt.show(
pts1, edg,
axes=False,
bg='white',
at=0,
interactive=False,
zoom=1.5
).screenshot("network.png")
ax = plt.subplot(111)
ax.plot(
[1, 2, 3], [1, 2, 3],
'go-',
label='line 1',
linewidth=2
)
arr_img = vplt.screenshot(returnNumpy=True, scale=1)
im = OffsetImage(arr_img, zoom=0.25)
ab = AnnotationBbox(im, (1, 0), xycoords='axes fraction', box_alignment=(1.1, -0.1), frameon=False)
ax.add_artist(ab)
plt.show()
ax.figure.savefig(
"output.svg",
transparent=True,
dpi=600,
bbox_inches="tight"
)
插图中的图像分辨率太低。关于如何在不损失分辨率的情况下添加插图的建议将非常有帮助。
编辑: 下面发布的答案适用于添加 2D 网络,但我仍在寻找对在插图中添加 3D 网络有用的方法。
我不熟悉 vedo
,但一般过程是创建一个 inset_axis
并使用 imshow
绘制图像。但是,您的代码使用的 networkx
具有 matplotlib
绑定,您可以直接执行此操作而无需 vedo
编辑:为 3d 绘图编辑的代码
import networkx as nx
import matplotlib.pyplot as plt
G = nx.gnm_random_graph(n=10, m=15, seed=1)
nxpos = nx.spring_layout(G, dim=3, seed=1)
nxpts = [nxpos[pt] for pt in sorted(nxpos)]
nx_lines = [(nxpts[i], nxpts[j]) for i, j in G.edges()]
# node values
values = [[1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[30, 80, 10, 79, 70, 60, 75, 78, 65, 10],
[1, .30, .10, .79, .70, .60, .75, .78, .65, .90]]
time = [0.0, 0.1, 0.2] # in seconds
fig, ax = plt.subplots()
ax.plot(
[1, 2, 3], [1, 2, 3],
'go-',
label='line 1',
linewidth=2
)
from mpl_toolkits.mplot3d import (Axes3D)
from matplotlib.transforms import Bbox
rect = [.6, 0, .5, .5]
bbox = Bbox.from_bounds(*rect)
inax = fig.add_axes(bbox, projection = '3d')
# inax = add_inset_axes(,
# ax_target = ax,
# fig = fig, projection = '3d')
# inax.axis('off')
# set angle
angle = 25
inax.view_init(10, angle)
# hide axes, make transparent
# inax.set_facecolor('none')
# inax.grid('off')
import numpy as np
# plot 3d
seen = set()
for i, j in G.edges():
x = np.stack((nxpos[i], nxpos[j]))
inax.plot(*x.T, color = 'k')
if i not in seen:
inax.scatter(*x[0], color = 'skyblue')
seen.add(i)
if j not in seen:
inax.scatter(*x[1], color = "skyblue")
seen.add(j)
fig.show()