你如何在 Pandas 中使用条件语句进行分组和聚合?
How do you groupby and aggregate using conditional statements in Pandas?
关于问题 的扩展,我想知道如何根据条件向以下内容添加聚合:
Index Name Item Quantity
0 John Apple Red 10
1 John Apple Green 5
2 John Orange Cali 12
3 Jane Apple Red 10
4 Jane Apple Green 5
5 Jane Orange Cali 18
6 Jane Orange Spain 2
7 John Banana 3
8 Jane Coconut 5
9 John Lime 10
... And so forth
我需要做的是将这些数据转换成如下所示的数据框。 注意:我只对在单独的列中获取苹果和橙子的总量感兴趣,即任何出现在某个组中的其他项目都不会包含在聚合中在“数量”列上完成(但它们仍将作为字符串出现在“所有项目”列中):
Index Name All Items Apples Total Oranges Total
0 John Apple Red, Apple Green, Orange Cali, Banana, Lime 15 12
1 Jane Apple Red, Apple Green, Orange Cali, Coconut 15 20
我该如何实现?非常感谢!
编辑:修复了一个错误。
为此,在执行分组之前,您可以创建 Total
列。这些将包含该行中苹果和橙子的数量,具体取决于该行的项目是苹果还是橙子。
df['Apples Total'] = df.apply(lambda x: x.Quantity if ('Apple' in x.Item) else 0, axis=1)
df['Oranges Total'] = df.apply(lambda x: x.Quantity if ('Orange' in x.Item) else 0, axis=1)
当这就位时,groupby name 和 aggregate on each column。对总计列求和,并聚合以在项目列上列出。
df.groupby('Name').agg({'Apples Total': 'sum',
'Oranges Total': 'sum',
'Item': lambda x: list(x)
})
您可以在提取 Apple
和 Orange
子字符串后使用 groupby
和 pivot_table
,如下所示:
import re
s = df['Item'].str.extract("(Apple|Orange)",expand=False,flags=re.I)
# re.I used above is optional and is used for case insensitive matching
a = df.assign(Item_1=s).dropna(subset=['Item_1'])
out = (a.groupby("Name")['Item'].agg(",".join).to_frame().join(
a.pivot_table("Quantity","Name","Item_1",aggfunc=sum).add_suffix("_Total"))
.reset_index())
print(out)
Name Item Apple_Total \
0 Jane Apple Red,Apple Green,Orange Cali,Orange Spain 15
1 John Apple Red,Apple Green,Orange Cali 15
Orange_Total
0 20
1 12
编辑:
对于已编辑的问题,除了原始数据帧 df
上的 groupby 而不是子集 a
之外,您只能使用相同的代码,然后加入:
out = (df.groupby("Name")['Item'].agg(",".join).to_frame().join(
a.pivot_table("Quantity","Name","Item_1",aggfunc=sum).add_suffix("_Total"))
.reset_index())
print(out)
Name Item Apple_Total \
0 Jane Apple Red,Apple Green,Orange Cali,Orange Spain... 15
1 John Apple Red,Apple Green,Orange Cali,Banana,Lime 15
Orange_Total
0 20
1 12
首先在 Item
列上使用 str.contains
仅过滤所需的行
from io import StringIO
import pandas as pd
s = StringIO("""Name;Item;Quantity
John;Apple Red;10
John;Apple Green;5
John;Orange Cali;12
Jane;Apple Red;10
Jane;Apple Green;5
Jane;Orange Cali;18
Jane;Orange Spain;2
John;Banana;3
Jane;Coconut;5
John;Lime;10
""")
df = pd.read_csv(s,sep=';')
req_items_idx = df[df.Item.str.contains('Apple|Orange')].index
df_filtered = df.loc[req_items_idx,:]
获得它们后,您可以进一步旋转数据以根据 Name
获得所需的值
pivot_df = pd.pivot_table(df_filtered,index=['Name'],columns=['Item'],aggfunc='sum')
pivot_df.columns = pivot_df.columns.droplevel()
pivot_df.columns.name = None
pivot_df = pivot_df.reset_index()
生成苹果和橙子的总数
orange_columns = pivot_df.columns[pivot_df.columns.str.contains('Orange')].tolist()
apple_columns = pivot_df.columns[pivot_df.columns.str.contains('Apple')].tolist()
pivot_df['Apples Total'] = pivot_df.loc[:,apple_columns].sum(axis=1)
pivot_df['Orange Total'] = pivot_df.loc[:,orange_columns].sum(axis=1)
将 Items
组合在一起的包装函数
def combine_items(inp,columns):
res = []
for val,col in zip(inp.values,columns):
if not pd.isnull(val):
res += [col]
return ','.join(res)
req_columns = apple_columns+orange_columns
pivot_df['Items'] = pivot_df[apple_columns+orange_columns].apply(combine_items,args=([req_columns]),axis=1)
最后,您可以在一个地方获取所需的列并打印值
total_columns = pivot_df.columns[pivot_df.columns.str.contains('Total')].tolist()
name_item_columns = pivot_df.columns[pivot_df.columns.str.contains('Name|Items')].tolist()
>>> pivot_df[name_item_columns+total_columns]
Name Items Apples Total Orange Total
0 Jane Apple Green,Apple Red,Orange Cali,Orange Spain 15.0 20.0
1 John Apple Green,Apple Red,Orange Cali 15.0 12.0
答案旨在概述解决类似问题的各个步骤和方法
df = pd.read_csv(StringIO("""
Index,Name,Item,Quantity
0,John,Apple Red,10
1,John,Apple Green,5
2,John,Orange Cali,12
3,Jane,Apple Red,10
4,Jane,Apple Green,5
5,Jane,Orange Cali,18
6,Jane,Orange Spain,2
7,John,Banana,3
8,Jane,Coconut,5
9,John,Lime,10
"""))
正在获取项目列表
按名称分组以获得项目列表
items_list = pd.DataFrame(df.groupby(["Name"])["Item"].apply(list)).rename(columns={"Item": "All Items"})
items_list
All Items
Name
Jane [Apple Red, Apple Green, Orange Cali, Orange Spain, Coconut]
John [Apple Red, Apple Green, Orange Cali, Banana, Lime]
获取名称项组的计数
重命名 temp df items 列,以便所有 apples/oranges 得到类似处理
temp2 = df.groupby(["Name", "Item"])['Quantity'].apply(sum)
temp2 = pd.DataFrame(temp2).reset_index().set_index("Name")
temp2['Item'] = temp2['Item'].str.replace(r'(?:.*)(apple|orange)(?:.*)', r'', case=False,regex=True)
temp2
Item Quantity
Name
Jane Apple 5
Jane Apple 10
Jane Coconut 5
Jane Orange 18
Jane Orange 2
John Apple 5
John Apple 10
John Banana 3
John Lime 10
John Orange 12
获得所需的枢轴table
pivot table 用于将项目计数作为单独的列并仅保留苹果橙计数
pivot_df = pd.pivot_table(temp2, values='Quantity', columns='Item', index=["Name"], aggfunc=np.sum)
pivot_df = pivot_df[['Apple', 'Orange']]
pivot_df
Item Apple Orange
Name
Jane 15.0 20.0
John 15.0 12.0
合并项目列表 df 和 pivot_df
output = items_list.merge(pivot_df, on="Name").rename(columns = {'Apple': 'Apples
Total', 'Orange': 'Oranges Total'})
output
All Items Apples Total Oranges Total
Name
Jane [Apple Red, Apple Green, Orange Cali, Orange Spain, Coconut] 15.0 20.0
John [Apple Red, Apple Green, Orange Cali, Banana, Lime] 15.0 12.0
关于问题
Index Name Item Quantity
0 John Apple Red 10
1 John Apple Green 5
2 John Orange Cali 12
3 Jane Apple Red 10
4 Jane Apple Green 5
5 Jane Orange Cali 18
6 Jane Orange Spain 2
7 John Banana 3
8 Jane Coconut 5
9 John Lime 10
... And so forth
我需要做的是将这些数据转换成如下所示的数据框。 注意:我只对在单独的列中获取苹果和橙子的总量感兴趣,即任何出现在某个组中的其他项目都不会包含在聚合中在“数量”列上完成(但它们仍将作为字符串出现在“所有项目”列中):
Index Name All Items Apples Total Oranges Total
0 John Apple Red, Apple Green, Orange Cali, Banana, Lime 15 12
1 Jane Apple Red, Apple Green, Orange Cali, Coconut 15 20
我该如何实现?非常感谢!
编辑:修复了一个错误。
为此,在执行分组之前,您可以创建 Total
列。这些将包含该行中苹果和橙子的数量,具体取决于该行的项目是苹果还是橙子。
df['Apples Total'] = df.apply(lambda x: x.Quantity if ('Apple' in x.Item) else 0, axis=1)
df['Oranges Total'] = df.apply(lambda x: x.Quantity if ('Orange' in x.Item) else 0, axis=1)
当这就位时,groupby name 和 aggregate on each column。对总计列求和,并聚合以在项目列上列出。
df.groupby('Name').agg({'Apples Total': 'sum',
'Oranges Total': 'sum',
'Item': lambda x: list(x)
})
您可以在提取 Apple
和 Orange
子字符串后使用 groupby
和 pivot_table
,如下所示:
import re
s = df['Item'].str.extract("(Apple|Orange)",expand=False,flags=re.I)
# re.I used above is optional and is used for case insensitive matching
a = df.assign(Item_1=s).dropna(subset=['Item_1'])
out = (a.groupby("Name")['Item'].agg(",".join).to_frame().join(
a.pivot_table("Quantity","Name","Item_1",aggfunc=sum).add_suffix("_Total"))
.reset_index())
print(out)
Name Item Apple_Total \
0 Jane Apple Red,Apple Green,Orange Cali,Orange Spain 15
1 John Apple Red,Apple Green,Orange Cali 15
Orange_Total
0 20
1 12
编辑:
对于已编辑的问题,除了原始数据帧 df
上的 groupby 而不是子集 a
之外,您只能使用相同的代码,然后加入:
out = (df.groupby("Name")['Item'].agg(",".join).to_frame().join(
a.pivot_table("Quantity","Name","Item_1",aggfunc=sum).add_suffix("_Total"))
.reset_index())
print(out)
Name Item Apple_Total \
0 Jane Apple Red,Apple Green,Orange Cali,Orange Spain... 15
1 John Apple Red,Apple Green,Orange Cali,Banana,Lime 15
Orange_Total
0 20
1 12
首先在 Item
str.contains
仅过滤所需的行
from io import StringIO
import pandas as pd
s = StringIO("""Name;Item;Quantity
John;Apple Red;10
John;Apple Green;5
John;Orange Cali;12
Jane;Apple Red;10
Jane;Apple Green;5
Jane;Orange Cali;18
Jane;Orange Spain;2
John;Banana;3
Jane;Coconut;5
John;Lime;10
""")
df = pd.read_csv(s,sep=';')
req_items_idx = df[df.Item.str.contains('Apple|Orange')].index
df_filtered = df.loc[req_items_idx,:]
获得它们后,您可以进一步旋转数据以根据 Name
pivot_df = pd.pivot_table(df_filtered,index=['Name'],columns=['Item'],aggfunc='sum')
pivot_df.columns = pivot_df.columns.droplevel()
pivot_df.columns.name = None
pivot_df = pivot_df.reset_index()
生成苹果和橙子的总数
orange_columns = pivot_df.columns[pivot_df.columns.str.contains('Orange')].tolist()
apple_columns = pivot_df.columns[pivot_df.columns.str.contains('Apple')].tolist()
pivot_df['Apples Total'] = pivot_df.loc[:,apple_columns].sum(axis=1)
pivot_df['Orange Total'] = pivot_df.loc[:,orange_columns].sum(axis=1)
将 Items
组合在一起的包装函数
def combine_items(inp,columns):
res = []
for val,col in zip(inp.values,columns):
if not pd.isnull(val):
res += [col]
return ','.join(res)
req_columns = apple_columns+orange_columns
pivot_df['Items'] = pivot_df[apple_columns+orange_columns].apply(combine_items,args=([req_columns]),axis=1)
最后,您可以在一个地方获取所需的列并打印值
total_columns = pivot_df.columns[pivot_df.columns.str.contains('Total')].tolist()
name_item_columns = pivot_df.columns[pivot_df.columns.str.contains('Name|Items')].tolist()
>>> pivot_df[name_item_columns+total_columns]
Name Items Apples Total Orange Total
0 Jane Apple Green,Apple Red,Orange Cali,Orange Spain 15.0 20.0
1 John Apple Green,Apple Red,Orange Cali 15.0 12.0
答案旨在概述解决类似问题的各个步骤和方法
df = pd.read_csv(StringIO("""
Index,Name,Item,Quantity
0,John,Apple Red,10
1,John,Apple Green,5
2,John,Orange Cali,12
3,Jane,Apple Red,10
4,Jane,Apple Green,5
5,Jane,Orange Cali,18
6,Jane,Orange Spain,2
7,John,Banana,3
8,Jane,Coconut,5
9,John,Lime,10
"""))
正在获取项目列表
按名称分组以获得项目列表
items_list = pd.DataFrame(df.groupby(["Name"])["Item"].apply(list)).rename(columns={"Item": "All Items"})
items_list
All Items
Name
Jane [Apple Red, Apple Green, Orange Cali, Orange Spain, Coconut]
John [Apple Red, Apple Green, Orange Cali, Banana, Lime]
获取名称项组的计数
重命名 temp df items 列,以便所有 apples/oranges 得到类似处理
temp2 = df.groupby(["Name", "Item"])['Quantity'].apply(sum)
temp2 = pd.DataFrame(temp2).reset_index().set_index("Name")
temp2['Item'] = temp2['Item'].str.replace(r'(?:.*)(apple|orange)(?:.*)', r'', case=False,regex=True)
temp2
Item Quantity
Name
Jane Apple 5
Jane Apple 10
Jane Coconut 5
Jane Orange 18
Jane Orange 2
John Apple 5
John Apple 10
John Banana 3
John Lime 10
John Orange 12
获得所需的枢轴table
pivot table 用于将项目计数作为单独的列并仅保留苹果橙计数
pivot_df = pd.pivot_table(temp2, values='Quantity', columns='Item', index=["Name"], aggfunc=np.sum)
pivot_df = pivot_df[['Apple', 'Orange']]
pivot_df
Item Apple Orange
Name
Jane 15.0 20.0
John 15.0 12.0
合并项目列表 df 和 pivot_df
output = items_list.merge(pivot_df, on="Name").rename(columns = {'Apple': 'Apples
Total', 'Orange': 'Oranges Total'})
output
All Items Apples Total Oranges Total
Name
Jane [Apple Red, Apple Green, Orange Cali, Orange Spain, Coconut] 15.0 20.0
John [Apple Red, Apple Green, Orange Cali, Banana, Lime] 15.0 12.0