Spark - java.lang.ClassCastException 将 Array[Array[Map[String,String]] 类型的列处理成 udf 时

Spark - java.lang.ClassCastException when processing into a udf a column of type Array[Array[Map[String,String]]]

我在 Array[Map[String,String]] 类型的 spark 中连接两列,生成一个 Array[Array[Map[String,String]]] 类型的新列。但是,我想将该列展平,最终得到一个 Array[Map[String,String]] 类型的列,其中两个原始列的值都为

我从 Spark 2.4 了解到,可以直接在列的串联上应用 flatten。像这样:

df.withColumn("concatenation", flatten(array($"colArrayMap1", $"colArrayMap2")))

但是我仍然使用 Spark 2.2,所以我需要为此使用 udf。这是我写的:

def flatten_collection(arr: Array[Array[Map[String,String]]]) = {
    if(arr == null)
        null
    else
        arr.flatten
}
  
val flatten_collection_udf = udf(flatten_collection _)

df.withColumn("concatenation", array($"colArrayMap1", $"colArrayMap2")).withColumn("concatenation", flatten_collection_udf($"concatenation")).show(false)

但我收到以下错误:

Caused by: org.apache.spark.SparkException: Failed to execute user defined function($anonfun: (array<array<map<string,string>>>) => array<map<string,string>>)
  at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
  at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
  at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$$anon.hasNext(WholeStageCodegenExec.scala:395)
  at org.apache.spark.sql.execution.SparkPlan$$anonfun.apply(SparkPlan.scala:234)
  at org.apache.spark.sql.execution.SparkPlan$$anonfun.apply(SparkPlan.scala:228)
  at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$$anonfun$apply.apply(RDD.scala:835)
  at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$$anonfun$apply.apply(RDD.scala:835)
  at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:49)
  at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
  at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
  at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
  at org.apache.spark.scheduler.Task.run(Task.scala:109)
  at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:380)
  at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
  at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
  at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.ClassCastException: scala.collection.mutable.WrappedArray$ofRef cannot be cast to [[Lscala.collection.immutable.Map;

我假设转换错误发生在 udf 中,但为什么以及如何避免它?

此外,如果有人知道不需要使用 UDF 的 Spark 2.2 解决方案,那就更好了

改编自答案 。需要 Seq 而不是 Array

def concat_arr(
    arr1: Seq[Map[String,String]],
    arr2: Seq[Map[String,String]]
) : Seq[Map[String,String]] =
{
    (arr1 ++ arr2)
}
val concatUDF = udf(concat_arr _)

val df2 = df.withColumn("concatenation", concatUDF($"colArrayMap1", $"colArrayMap2"))

df2.show(false)
+--------------------+--------------------+----------------------------------------+
|colArrayMap1        |colArrayMap2        |concatenation                           |
+--------------------+--------------------+----------------------------------------+
|[[a -> b], [c -> d]]|[[a -> b], [c -> d]]|[[a -> b], [c -> d], [a -> b], [c -> d]]|
+--------------------+--------------------+----------------------------------------+