在 Python 中比 MSE 更好地比较图像的快速技术

Quick technique for comparing images better than MSE in Python

我一直在使用结构相似性指数(通过tensorflow)来比较图像,但是它花费的时间太长了。我想知道是否有一种不需要那么多时间的替代技术。如果有人能在 Python.

中指出比 tensorflow 更有效的 SSIM 实现,那也没关系

我使用 SSIM 的目的是,给定参考图像 (A) 和 图像 (B),我需要了解 B 中的哪个图像最多类似于参考图片A.

更新 01-02-2021

我决定探索其他一些可用于图像比较的 Python 模块。我也想用concurrent.futures,以前没用过

我用我写的代码创建了两个 GitGub Gists

skimage ssim image comparison

ImageHash aHash image comparison

ImageHash 模块能够在 0.29 秒内比较 100 张图像,而 skimage 模块用了 1.2 秒来完成相同的任务。


原版POST

我没有测试这个答案中代码的速度,因为我只在我发布到 GitHub:

的一些图像测试中使用了代码

facial similarities

facial prediction

下面的代码将生成参考图像 (A) 和图像集 (B) 之间的相似度分数。

完整代码位于in my GitHub repository

import os
from os import walk
import numpy as np
from PIL import Image
from math import *


def get_image_files(directory_of_images):
    """
     This function is designed to traverse a directory tree and extract all
     the image names contained in the directory.
    :param directory_of_images: the name of the target directory containing
           the images to be trained on.
    :return: list of images to be processed.
    """
    images_to_process = []
    for (dirpath, dirnames, filenames) in walk(directory_of_images):
        for filename in filenames:
            accepted_extensions = ('.bmp', '.gif', '.jpg', '.jpeg', '.png', '.svg', '.tiff')
            if filename.endswith(accepted_extensions):
                images_to_process.append(os.path.join(dirpath, filename))
        return images_to_process


def pre_process_images(image_one, image_two, additional_resize=False, max_image_size=1000):
    """
     This function is designed to resize the images using the Pillow module.
    :param image_one: primary image to evaluate against a secondary image
    :param image_two: secondary image to evaluate against the primary image
    :param additional_resize:
    :param max_image_size: maximum allowable image size in pixels
    :return: resized images
    """
    lower_boundary_size = (min(image_one.size[0], image_two.size[0]), min(image_one.size[1], image_two.size[1]))
    # reference: https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image.resize
    # reference: https://pillow.readthedocs.io/en/stable/handbook/concepts.html#PIL.Image.LANCZOS
    image_one = image_one.resize(lower_boundary_size, resample=Image.LANCZOS)
    image_two = image_two.resize(lower_boundary_size, resample=Image.LANCZOS)
    if max(image_one.size) > max_image_size and additional_resize:
        resize_factor = max_image_size / max(image_one.size)
        image_one = image_one.resize((int(lower_boundary_size[0] * resize_factor),
                                      int(lower_boundary_size[1] * resize_factor)), resample=Image.LANCZOS)

        image_two = image_two.resize((int(lower_boundary_size[0] * resize_factor),
                                      int(lower_boundary_size[1] * resize_factor)), resample=Image.LANCZOS)
    return image_one, image_two


def get_ssim_similarity(image_one_name, image_two_name, window_size=7, dynamic_range=255):
    """
    The Structural Similarity Index (SSIM) is a method for measuring the similarity between two images.
    The SSIM index can be viewed as a quality measure of one of the images being compared, provided the
    other image is regarded as of perfect quality.
    :param image_one_name: primary image to evaluate against a secondary image
    :param image_two_name: secondary image to evaluate against the primary image
    :param window_size: The side-length of the sliding window used in comparison. Must be an odd value.
    :param dynamic_range: Dynamic range of the input image, specified as a positive scalar.
    The default dynamic range is 255 for images of data type uint8.
    :return: computational score and image names
    """
    image_one = Image.open(image_one_name)
    image_two = Image.open(image_two_name)

    if min(list(image_one.size) + list(image_two.size)) < 7:
        raise Exception("One of the images was too small to process using the SSIM approach")
    image_one, image_two = pre_process_images(image_one, image_two, True)
    image_one, image_two = image_one.convert('I'), image_two.convert('I')
    c1 = (dynamic_range * 0.01) ** 2
    c2 = (dynamic_range * 0.03) ** 2
    pixel_length = window_size ** 2
    ssim = 0.0
    adjusted_width = image_one.size[0] // window_size * window_size
    adjusted_height = image_one.size[1] // window_size * window_size
    for i in range(0, adjusted_width, window_size):
        for j in range(0, adjusted_height, window_size):
            crop_box = (i, j, i + window_size, j + window_size)
            crop_box_one = image_one.crop(crop_box)
            crop_box_two = image_two.crop(crop_box)
            np_array_one, np_array_two = np.array(crop_box_one).flatten(), np.array(crop_box_two).flatten()
            np_variable_one, np_variable_two = np.var(np_array_one), np.var(np_array_two)
            np_average_one, np_average_two = np.average(np_array_one), np.average(np_array_two)
            cov = (np.sum(np_array_one * np_array_two) - (np.sum(np_array_one) *
                                                          np.sum(crop_box_two) / pixel_length)) / pixel_length
            ssim += ((2.0 * np_average_one * np_average_two + c1) * (2.0 * cov + c2)) / \
                    ((np_average_one ** 2 + np_average_two ** 2 + c1) * (np_variable_one + np_variable_two + c2))
    similarity_percent = (ssim * pixel_length / (adjusted_height * adjusted_width)) * 100
    return round(similarity_percent, 2)


target_image = 'a.jpg'
image_directory = 'b_images'

images = get_image_files(image_directory)

for image in images:
    ssim_result = get_ssim_similarity(target_image, image)

我还建议查看 Python 模块 ImageHash. I have multiple code examples and test cases published here